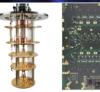
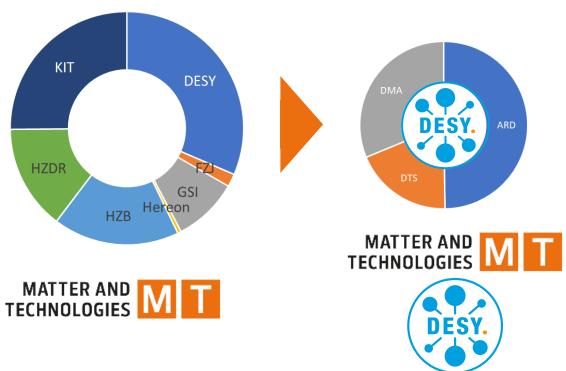

Accelerators, Detectors, Data

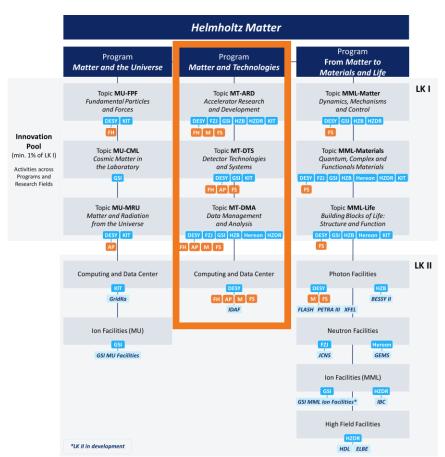
Helmholtz Matter and Technologies (MT) program (PoF IV)



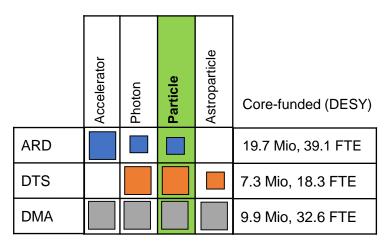


Driven by science and driving science.

DESY plays a central part in MT: PoF IV status



MT is a strong team with DESY an integral part



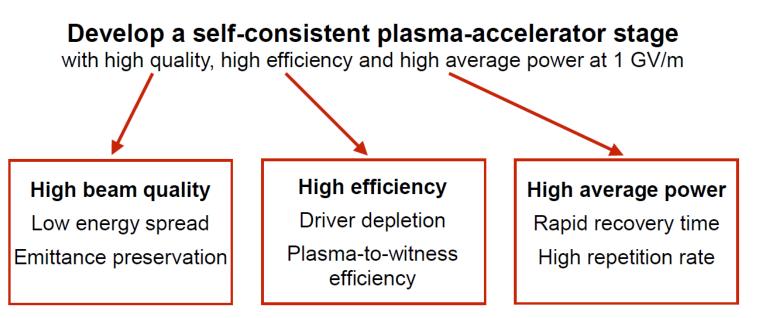
MT: A cross-divisional activity

Mapping to DESY divisions

DESY-FH has large contributions in MT-DTS and MT-DMA and a smaller, but important contribution in ARD.

MT-ARD @ DESY

- MT-ARD @ DESY is a common effort of M, FH and FS, with M being the largest contributor
- Key aims for DESY:
 - Proof of concept of efficient HDC/CW SRF (XFEL upgrade)
 - Developing reliable plasma accelerators
- FH contribution (about 9 FTE) within FTX-AST:
 - FLASH-FORWARD → Beam-driven plasma wakefield research, together with M

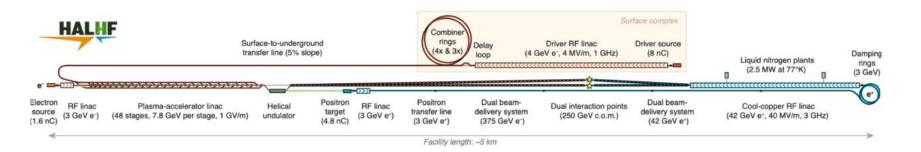


MT-ARD @ DESY-FH

Matthew Wing Stephan Wesch

FLASHForward Goals: Mid-term future

All combined with >1 GV/m with energy gain as large as possible and as stable as possible.


MT-ARD @ DESY-FH

Matthew Wing Stephan Wesch

Longer-term goals

- Going to higher energies:
 - ELBEX / EuXFEL booster for high energy?
 - HAI HF demonstrator?

MT-ARD

Continuous development of the very successful ARD sub-topic structure

2028 – 2034 PoF V 2021 – 2027 PoF IV 5 centres & 2 Institutes DESY. ST1 SRF systems for sustainable Advanced CW SRF-Systems applications HZB Helmholtz
Zentrum Berlin
HZDR SIT New Concepts and Prototypes for ST2 Efficient and High-Performance Maximizing the Performance of R&D for outstanding Hadron & Electron Accelerators Hadron & Electron Accelerators science & technologies Tailored 6D Beam Dynamics, ST3 Advanced Beam Control, & disruption Diagnostics, and Intelligent **Diagnostics and Dynamics** eam) Control ST4 Plasma Accelerators and their Ultra Compact, Novel Accelerators and their Applications **Applications** Within PoF V DESY will contribute to all Contribution to Competence Team subtopics, with a clear focus on ST3 Optical Technologies (OPT)

(Beam Control) and ST4 (Plasma)

MT-DTS @ DESY

- MT-DTS @ DESY is a common effort of FH, FS and AP.
- Main drivers @DESY are and will be <u>systems</u> for experiments in MU and MML
- FH contributes about half of the FTE in MT-DTS, FS about a third.
- FH DTS FTEs (around 30 in PoF V) are distributed amongst the FH groups (FTX, ATLAS, CMS, BELLE, ALPS, FE), with many people contributing to both MT-DTS and MU-FPF.
 - Detector activities in FH are formally part of MT-DTS (R&D) as well as MU-FPF (construction).
- Infrastructures are key for our activities: in particular DESY testbeam (MT) and DAF (currently MU)
- Key recommendations from scientific review:
 - " DESY would benefit from a dedicated, more centrally coordinated, detector development group"
 - "The proposed Distributed Detector Laboratory (DDL) would offer a tremendous opportunity"

MT-DTS @ FH

Key components for PoF V activities

- Next generation trackers and calorimeters are required to provide high resolution, additional
 measurements such as timing and energy, while consuming little power at reduced non-detection
 related mass.
- Maximising data processing on the detector is paramount to achieve performance targets and to keep the needed data transfer under control.
- Strategy:
 - High level of integration allows for scalability while keeping system complexity under control
 - High bandwidth data transfer at low power consumption
- Key technologies to address these challenges
 - CMOS based sensors
 - Photonic transceivers
 - Advanced interconnects and wafer bonding
 - Advanced cooling techniques

MT-DTS @ PoF V

Preliminary structure

Detector Technology and Systems (DTS)

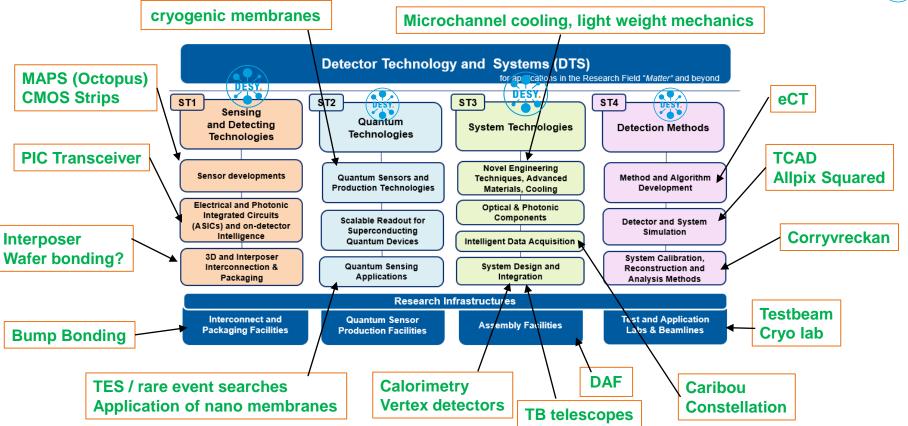
ST1

Sensing and Detecting Technologies ST2

Quantum Technologies ST3

System Technologies ST4

Detection Methods


"Realize intelligent and compact granular detectors with high space and time resolution" "Establish highly pixelated quantum sensors with ultimate energy resolution"

"Build sustainable detector systems and cope with drastically increasing data rates"

"Integrate advanced detector systems into multidimensional modalities for scientific discovery"

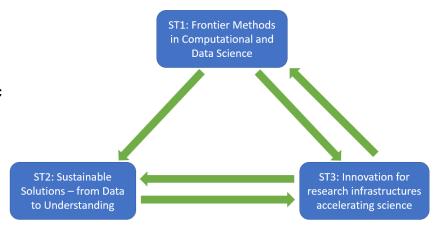
DTS FH activities in preliminary PoF V structure

Infrastructure for Detector R&D

- Test beam: Essential work horse for detector development in particle and nuclear physics.
 - Currently available test beams: 1-6 GeV electrons. 3 beam lines
 - With PETRA IV, a new test beam facility is needed, concepts are being developed
 - New beam telescopes: synergy with detector technology development
- Detector Assembly facility (DAF)
 - Currently fully in use for LHC upgrades (expected until 2027)
 - Large clean rooms with equipment for detector assembly, testing, mechanical integration, cooling tests, metrology etc.
 - Formally belongs to MU-FPF
- Smaller detector labs
 - e.g. Cryogenic detector labs
- Workshops

MT-DMA @ DESY

- MT-DMA @ DESY is a common effort of FH, FS, AP and M
 - FH and FS about equally contributing, AP and M smaller
- Vision for DESY:
 - Be at the forefront of computational and data science for the research field Matter, jointly and sustainably addressing the complex challenges of big data, simulation, and scientific computing.
- FH DMA FTEs (around 27 in PoF V) are distributed amongst the FH groups including IT, with many people contributing to MT-DMA and MU-FPF in parallel.
- IDAF as infrastructure associated to MT with a clear connection to DMA
- Key recommendations from scientific review:
 - "While there is expertise in AI/ML distributed around the DMA effort, there seems to be no dedicated person or
 organizational structure specifically responsible for developing or coordinating a strategic vision for AI/ML and data
 science."
 - "There are multiple examples of excellent software development practices leading to impactful cyberinfrastructure.
 There is an opportunity to build on this success and continue spreading these best practices to other parts of the lab."


MT-DMA @ DESY-FH

Key DESY-FH topics:

- Artificial Intelligence
- Data- and Metadata storage (e.g. dCache, MDC for on-site)
- Research software engineering hub (e.g. key4HEP)
- Autonomous experiments (autonomous beamlines a key topic within DESY, might profit)
- Sustainable dynamic energy use and resource provision for large infrastructures
- Al-based procedures for monitoring and digital twin technology for distributed computing infrastructures (IDAF)
- Quantum computing applications

Interdisciplinary
Photon science MML Accelerator R&D MI

(Astro-)particle physics MU

Data and
Data centric concepts and implementation

Analysis
Designed for the diversity of analyses

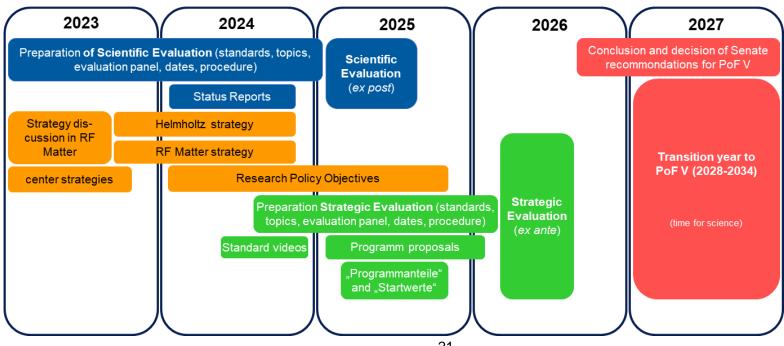
Facility.

Supporting the complete data lifecycle

- Key goals for PoF V
 - Enabling the large, PoF V data sources (HL-LHC, PETRA IV, BELLE, CTAO, XFEL)
 - Serving the smaller onsite experiments
 - Digital twin for sustainable data center
 - Integration of AI at all levels of user interaction
 - Support novel analysis techniques (e.g. columnar analysis): Interplay Users<==>IDAF
- TIER Upgrade

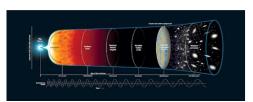
Summary: MT @ DESY-FH

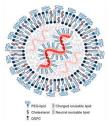
- Planning for MT in PoF V is in full swing
 - Three topic structure ARD, DMA, DTS remains unchanged
 - Smaller changes including more weight to sustainability, optical technologies, quantum
- MT at DESY-FH very well positioned, key partner in all topics
 - Focus ARD: Plasma (FLASHForward)
 - Focus DTS: Systems, Pixel detectors, Data
 - Focus DMA: Al methods, Sustainability, Infrastructures
- Points under discussion for MT@DESY-FH
 - How to strengthen cross-divisional coherence and cooperation?
 - Data, in particular Al
 - Detectors
 - Synergies with PETRA IV
 - Infrastructure development: Test beam in times of PETRA IV, future of DAF, "DDL"-like project?


Backup

Timeline for PoF V

Preparations for PoF V in full swing


An infrastructure proposal to make a difference for Matter


DDL: current status and prospectives

- DDL: a key strategic initiative to make cutting edge detector infrastructure available to Matter
- All participating centers got recommendations to try again for a DDL like structure

"Grand Challenges" in Research and Society

We should think carefully how a new Ansatz for a central DTS activity can be defined and – eventually - funded

Topics of Interest & Connections to DRDs

Silicon detector development is a strong

focus of our interest

- Monolithic CMOS
- Novel sensors (ELAD, digital SiPM, ...)
- Software tool developments
- Involvement in DRD3 (Silicon)

Calorimeter developments

- Highly granular SiPM on tile calorimeter
- Involvement in DRD6 (Calo)

Data transfer

- Silicon photonics
- · Advanced interconnects
- Involvement in DRD7 (Electronics)

Integration

- Detector integration center
- R&D on light weight mechanics, local cooling and cooling systems
- Involvement in DRD8 (Integration)

- Transition Edge Sensors
- Developments for axion/dark matter experiments
- Involvement in DRD5 (Quantum sensors)

Infrastructure

- Detector Assembly Facility
- Test beam

Cross topic goal: Build a demonstrator vertex detector based on CMOS technologies