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~ 45 MV/m▪ SRF cavities approach thermodynamic limit of niobium

Goals

▪ To achieve lower rf losses and by that higher quality factor Q0

➢ Coat inside of cavity with „higher“-Tc superconductor

since 𝑅𝐵𝐶𝑆 ∝ 𝑒−
𝑇𝐶
2 and 𝑄0 ∝

1

𝑅𝑆

▪ To enhance accelerating gradient Eacc

➢ Surpass field limit Hsh by coating thin Superconductor-

Insulator-Superconductor (SIS) multilayers

Motivation
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Magnetic Characterization Study

➾ comprehensively investigate

the magnetic properties of         

SIS layers



BCS and GL theory

Microscopic

electron-lattice-

interaction

Superconductivity in Particle Accelerators
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Theory

Meissner effect

Type II SCs
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Niobium as material of choice for SRF cavities

Highest known TC of 9.27 K

Highest known HC1 of 180 mT

➾ Upper limit for rf vortex 

penetration even higher

Superheating field

Hsh ~ 200 to 250 mT

[1]

[2]



Limiting Performance Factors
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Surface Resistance Q0 improves with lower RS

... but is limited by various factors!

→ Magnetic Quenching when Happlied > HC1 

→ Dissipation becomes unmanagable!

Everything except RBCS

• Weakly coupled grain 

boundaries, surface 

oxides etc.

• Trapped magnetic flux

Eacc is limited by dissipation because of 

high surface fields!

RBCS vanishes for T → 0 K

Theory



▪ Gurevich: Vortices are energetically supressed in SC thin film

➢ d < λL

➢ Pancake vortices

▪ SIS multilayer idea: insulator as vortex barrier

→ global vortex penetration is prevented

▪ Kubo’s new argument: Vortex penetration shifts to Hffp>HC1

through “counter current” at interfaces

➢ Layer must be thin enough so that rf
field sees counter currents
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Thin Films and Screening Currents
A. Gurevich, APL 88 (2006), T. Kubo, SUST 30 (2017)

[https://doi.org/10.1103/PhysRevLett.12.14]

jcounter

Bean-Livingston barrier: [Asaduzzaman M. et al., Direct measurement of the Meissner 
screening profile in superconductor-superconductor bilayers

using low-energy muon spin rotation (2023)]

Theory

‘Pancake’ Vortex

Vortex dissipation becomes 

energetically unfavourable



▪ Top superconductor sees majority of rf field

→ Surface resistance improves

▪ Insulating layer creates more interfaces

→ More counter currents

▪ Layers must be thinner than λL,Top

→ RF field is affected by counter currents

→ Optimal layer thickness dS depends on λL and HC1

of the used bulk and layer materials

SIS Multilayer Theory
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Niobium

(9.27 K)

cubic high-Tc superconductors NbN (17.3 K) and NbTiN (17.8 K)

AlN as insulator

Literature values

Theoretical maximum surface field a SIS 

coated cavity can withstand:

Theory



Sample Preparation
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[3]

▪ Uniform layer-by-layer thin film coatings

▪ Various advantages

➢ Low-temperature deposition

➢ High quality, high conformality

➢ Vast choice of precursors

▪ Self-regulating process

▪ Convenient for coating the inside of an 

SRF cavity

Plasma-Enhanced Atomic Layer Deposition (PEALD)

Methods



Sample Preparation
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900 °C annealing for 1 hour with controlled 
heating and cooling rates

Precursor Target Material

TMA AlN

TDMAT TiN

TBTDEN NbN

▪ Plasma mix of H2 and N2

▪ Deposition temperature 250 °C

PEALD Process Parameters Post-Deposition Annealing

Improvement of TC and HC1

▪ Recrystallisation

▪ Degas of impurities

Methods



▪ Depth-resolved near-surface magnetic 

properties measurement → λL

▪ Spin polarised muon beam with energy of 0.5 to 

30 keV

▪ Resolves up to 150 nm below sample surface

Characterization Measurements

X-Ray Reflectivity (XRR)

▪ Determine thin film thickness

▪ Reflectivity curve shows 

interference oscillations

→ periodicity related to layer 

thickness

Low Energy-μ Spin Rotation (μSR)
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Oscillation width

[4]

[5] [6]

Methods



Characterization Measurements

Magnetic Flux Expulsion Lens (MFEL)

▪ SC/NC sample transition with pulsed 

heating under controlled cooling conditions

TC Measurements

Contactless Inductive Tc Measurement  

on Nb

▪ Ramping-up T until SC state breaks down

Tc Measurements on Si (with PPMS)

▪ Electrical-transport mode

→ measure electrical resistance R vs. T

▪ Vibrating sample magnetometry (VSM)

→ measure DC magnetic moment vs. T
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[7]
[7]

Methods



1 supercycle NbTiN = 3 x NbN + 1 x TiN

Two-fold results for NbTiN:

1. GPC calculated from measured XRR NbTiN thickness

2. GPC calculated from individual GPCs of NbN and TiN

✓ Results within the

expected range

PEALD Growth per Cycle for NbN, TiN and NbTiN
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XRR results matching NbTiN GPCs

Results



▪ Nb/NbTiN with d ~ 36 nm

▪ Kubo’s counter current 

model used for fit

▪ Expected decrease in B

with increasing E and z

▪ Hmax estimated for 

Nb/NbTiN SS bi-layer

λL and the Estimation of Hffp
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Clean limit of λL

Meissner Screening Profile

E

Normal state (20 K)

Meissner state (2.7 K)

[Credits to Ryan McFadden]

Results



Discussion on Meissner Profile and Hmax

12Master Colloquium  |  PEALD Coated Thin Films for SRF Cavity Research  |  Lea Preece

▪ Estimate based on Meissner Fit → improvable!

▪ Illustrates principle of field enhancement in an SS bi-layer

▪ Kubo’s counter current 

model suitable to 

determine λL

▪ Hmax estimate visualizes 

Kubo’s prediction

➢ Hmax > Hsh,Nb

➢ SIS multilayers 

needed!

[Credits to Ryan McFadden]

Meissner Screening Profile

E

Normal state (20 K)

Meissner state (2.7 K)

Discussion



▪ TC can be clearly assigned to the SC thin film

▪ Highest TC for Si/AlN/NbTiN in both measurement modes

▪ Measurement of an SIS Si/AlN/NbN sample → very low TC

PPMS TC Measurements on Si
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Highest 

value 

measured

Not the 

same for 

Nb 

substrate!

Results



▪ As-deposited: TC not

higher than 7 to 8 K

▪ SS with NbTiN behaves 

similar as unannealed 

samples

➢ TC ~ TC,Nb

➢ Two transitions?

▪ Only SIS with NbTiN

→ shows clear stepwise

transition

→ reaches high Tc

Contactless Inductive TC Measurements on Nb
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(Zoomed out)

Results



▪ Annealed Nb SIS and SS samples

▪ Only SIS with NbTiN 

→ shows stepwise transition

→ reaches high Tc

▪ No double transition or

significant increase in Tc for

→ SS Nb/NbTiN

→ SIS Nb/AlN/NbN

▪ All Tc measurements deliver 

matching results!

MFEL TC Measurements
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SIS

Nb/AlN/NbTiN

Stepwise 

Transition

SS

Nb/NbTiN

Continuous 

transition

SIS

Nb/AlN/NbN

[Credits to Daniel Turner]

Results



Bare and as-deposited samples

800 °C initial anneal

Magnetic Flux Expulsion
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Annealed SS samples

As-deposited SIS and SS thin films

▪ ER(Nb@900 °C) > ER(Nb@800 °C)

▪ Limited spatial thermal gradient

Annealed SS thin films

▪ Much higher flux expulsion

▪ Greater expulsion for 900 °C initial 

anneal

[Credits to Daniel Turner]

Results



Discussion on TC and Flux Expulsion
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▪ Better flux expulsion for 900 °C initial anneal 

➢ Increase in grain size with higher Tanneal

➢ Reduction in pinning sites

▪ Post-deposition annealing enhances flux expulsion 

➢ Even for SS Nb/NbTiN even if no high TC is achieved

➢ Assumption: Pancake effect adding additional force

that counteracts pinning force

Discussion



Discussion on TC and Flux Expulsion
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▪ High-T annealing required to activate the thin film and achieve high TC

▪ Insulating layer on Nb required to ensure increase in TC

➢ Barrier layer prevents oxygen from diffusing into NbTiN layer

➢ XRD confirms NbTiN 𝛿-phase formation for SS sample

Discussion



▪ Unclear if reduction of TC implies reduction of HC

➢ Experimental determination required 

➢ Useful comparison with estimation of Hmax

▪ Findings on oxygen diffusion allow new considerations on μSR data analysis

➢ Intermediate layer?

➢ Electron Microscopy probably shows oxygen-enriched phase with varying 

stoichiometry

▪ 900 °C annealing of SIS Nb/AlN/NbN

➢ Does not form intended high-TC 𝛿-phase

➢ Ti as stabiliser of the cubic high-TC 𝛿-phase 

➢ NbN excluded from SIS studies

Conclusion
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Summary
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▪ Further improvement of Nb SRF cavity performance neccessary...

▪ ... possible with PEALD coated SIS multilayer!

➢ Coating thin high-TC superconducting and insulating layers

➢ Pushing the field of first flux penetration Hffp

▪ More characterization and experimental testing of the SIS theory required

SIS is a promising approach towards new technologies and

improved future applications in SRF research!
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PEALD System at Universität
Hamburg

UHV Furnace at 
Universität Hamburg



Cavity Resonator
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[C. Antoine, EuCARD-BOO-2012-001 (2012)]



Isotope effect

▪ First clue that SC 

is linked to atomic 

lattice, not just 

electrons

Theory of Superconductivity
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SC Gap

▪ Sc electrons 

(bound state) only 

conduction 

electrons that 

interact with lattice 

at finite phonon 

frequency

▪ Energy gap around 

EF



London Penetration depth

Theory of Superconductivity
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▪ RBCS  decreases exponentially with respect to the 

temperature (higher T more electron will participate in the

losses)

▪ Proportional to the square of the frequency (higher

frequency means less effective shielding)

▪ Non-vanishing AC resistance

▪ Cooper pairs have inertia

➢ Can not follow the RF field instantly

➢ Do not shield RF field perfectly

▪ ‘Normal’ electrons are accelerated and dissipate power

Surface Resistance
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RBCS vanishes for T → 0 K



9-cell TESLA-type niobium cavity

28Master Colloquium  |  PEALD Coated Thin Films for SRF Cavity Research  |  Lea Preece



Quality Factor Q0
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▪ Nucleation of parallel magnetic vortices is energetically suppressed in SC thin films

▪ Yield of HC1:

▪ A coating of N superconducting thin layers then screens the interface field Hi on the Nb 

surface down to

Thin Films and Pancake Vortices (Gurevich)
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Kubo’s Theory
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[T. Kubo, SUST 30 (2017)]

S I S

S I S
Theoretical maximum surface field a SIS 

coated cavity can withstand:



Prediction of maximum surface field Hmax
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Clean limit of λL



Prediction of maximum surface field Hmax
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▪ Field enhancement depends on HC1, λL of 
both sc layer and substrate and η

▪ Assume Nb - Insulator - NbTiN
− HC1,Nb 180 mT
− HC1, NbTiN 213 mT
− η = 1

➢Isolator 15 nm, NbTiN 100 nm
− HC1 = 270 mT oder 63 MV/m
− η = 0.7

➢Isolator 10 nm, NbTiN 60 nm

− HC1 = 224 mT oder 52 MV/m

− η = 0.7
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Post-Deposition Annealing
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1 Theory & 

Methods

→ Improvement of TC and HC1

[Gonzalez.I. et al., J. Appl. Phys. 134, 035301 (2023)]

[Gonzalez.I. et al., J. Appl. Phys. 134, 159902 (2023)]

μ0HC1 = 15 mT

μ0HC1 = 81 mT

μ0HC1 = 98 mT

μ0HC1,bulk ≈ 33 mT

900 °C annealing for 1 hour

→ heating rate 3 °C/min

→ controlled cooling rate ~ 1.45 °C/min

for 8 hours to 200 °C



XRR
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Si / 100 supcyc. NbTiN ~ 25 nm

GenX Fit thickness: 24.9 nm



▪ Positively charged, spin-polarized muons are implanted into the 

material sample to be examined

▪ passage of a muon through the muon detector determines the time zero 

of the implantation

▪ come to rest on interstitial sites or atomic defects

▪ Interaction of the muon spin with the magnetic moments of the host 

lattice leads to a characteristic temporal evolution of the spin 

polarization →  different precession frequencies because of field 

distribution

▪ The original phase relationship of the individual spins is increasingly lost 

→ rotation signal therefore exhibits a temporal attenuation

How to measure the Meissner Profile with λL
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[5]

[6]



Stopping Profiles
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Asaduzzaman, Md et al. [arXiv:2304.09360v1] (2023)



Flux Expulsion Measurement
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Flux Expulsion Measurement
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STEM Measurements at CERN
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Scanning transmission electron microscopy of Tc_6_2 Nb/NbTiN



NbN Phase Diagram
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PEALD
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Deposition specifications
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▪ text

VSM Tc Measurements Results
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▪ 900 °C annealing of SIS 

Nb/AlN/NbN

➢ intended high-TC 𝛿-phase is 

not formed 

➢ Ti as stabiliser of the cubic 

high-TC 𝛿-phase 

➢ NbN excluded from SIS 

studies

Electrical-transport Tc Measurement Result for NbN
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HC1 measurement at KEK
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Ito, H. et al. [arXiv: 1907.03410]  (2019)

Measured HC1 of Nb/SiO2/NbN samples vs. NbN
thickness:

HC1 of bulk Nb

▪ Determination of HC1(d) for SIS mandatory

▪ Third-harmonic voltage measurement with

local magnetometry at KEK in Japan

➢ SIS coated Nb samples with varying sc

layer thicknesses

Compare results with theory!


