
EDM4hep <-> LCIO 
conversion

Today: New tales from {Particle,Object}IDs

May 22, 2025 Thomas Madlener



LCIO vs EDM4hep (re: ParticleID)

● Direction of relation different
○ Multithreading & mutability
○ “Don’t change what isn’t yours”

● ParticleID stored as part of 
ReconstructedParticle (or Cluster) 
in LCIO

○ Separate collections in EDM4hep

2



Interlude 1: Basics of EDM conversion

● Two step process
○ Convert all data, record mapping 

between converted EDM4hep and LCIO 
objects (potentially bi-directional)

○ Re-establish relations between objects
● Bonus for MarlinWrapper

○ Keep a “global” (lookup) mapping of 
EDM4hep <-> LCIO objects to 
keep event contents consistent

3



ParticleID conversion basics

● EDM4hep -> LCIO
○ Convert ReconstructedParticles
○ Convert ParticleIDs (store in mapping 

only)
○ Resolve relations

● LCIO -> EDM4hep
○ Convert ReconstructedParticles
○ Create ParticleID collections in parallel 

(one collection per PID algorithm)
○ (all relations immediately resolved 

during data conversion)

4



Interlude 2: ObjectIDs

● Uniquely identifies an object for I/O 
purposes

● CollectionID computed as a 32 bit 
hash of collection name

○ Assigned when collection is added to 
a Frame

● Not really considered to have any 
guarantees (in podio)

● But technically a convenient way to 
get from an object back to the 
collection it belongs to

5



Interlude 2.1: hash collision probabilities vs hash size

● Hash collision: two distinct values 
are mapped to the same value

● More likely than you think
○ Somewhat risky for podio(!)
○ 32 bits puts us somewhere between 

1:10000 and 1:100000

6

https://github.com/AIDASoft/podio/pull/412#issuecomment-1577050376


Interlude 3: The transient event store in Gaudi

● Used for passing data between 
individual algorithms

● A-priori independent of podio & 
EDM4hep

7



Interlude 3 (ctd): Data services in k4FWCore

● k4FWCore implements I/O functionality for EDM4hep on top of Gaudi
○ Legacy PodioDataSvc
○ New IOSvc
○ Both offer functionality for necessary type casting, etc.

● PodioDataSvc uses a Frame internally
○ Custom wrapper around EventDataSvc
○ Effectively bypasses Gaudi TES for EDM4hep collections and puts / gets collections 

to / from its internal Frame
○ Collections get a collectionID when they are handed to the TES (aka the Frame)

● IOSvc only deals with I/O
○ Uses standard Gaudi EventDataSvc
○ Reads Frame and puts collections into the TES
○ Creates / Reuses Frame for writing
○ Collections get a collectionID when they are written

8



ParticleID conversion of metadata

● ParticleIDs can have PID metadata attached
○ Algorithm name
○ Parameter names

● Stored as metadata (parameters) of collection
○ Attached to ReconstructedParticle collection in LCIO
○ Stored as collection parameters for ParticleID collection in EDM4hep

● Valid for all collections
○ Still attached to each collection in LCIO

● Challenge: Need to figure out the collection name of the 
ReconstructedParticle collection in LCIO

9



ParticleID metadata attaching (EDM4hep -> LCIO)

● What we have
○ Fully converted ParticleID and 

ReconstructedParticle collections
○ (Maybe) PID meta information
○ Mapping of collection IDs to collection 

names
● What we need

○ Name of the ReconstructedParticle 
collection (LCIO) to which we should 
attach the PID meta information

● Problem: Collections that have not 
yet seen a Frame have no 
collection ID

○ Will get a “random” name

Current implementation

This will be 0xffffffff (i.e. (uint32_t) -1) 
for collections that were created during 
processing

10



A possible solution

● Need to assign collection IDs when 
collection is handed to the TES

● Need to avoid giving any 
(accidental) guarantees about 
collection IDs

○ They should remain an “implementation 
detail”

● Introduce another layer of 
abstraction

○ Make it possible to get to a collection 
from an object

○ iff: collection is known to the TES (or 
the Frame)

○ Can use the collection ID internally

podio#782

k4FWCore#312

Only gives a valid 
name if known

Already handles 
“unknown” names

11

https://github.com/AIDASoft/podio/pull/782
https://github.com/key4hep/k4FWCore/pull/312


Summary

● ParticleID relations have different directions between EDM4hep and LCIO
● Requires a “reverse” lookup (from object to collection)
● ObjectID is an implementation detail for I/O purposes in podio / EDM4hep

○ Need to avoid overloading it with “guarantees” (cf. Hyrums Law)
● There is no problem that another layer of abstraction doesn’t solve
● Proposed functionality in podio to get collection from object
● Proposed new CollectionFromObjectSvc to k4FWCore to do the same
● Both still use collectionID internally

○ At this point that is an optimization detail and it could also be done differently transparently for 
the user

12


