analysis of oxygen concentrations in niobium via EXAFS

bachelor presentation

NIELS ECKERT

(COR) Y LOW

Electron storage ring DELTA in Dortmund, own photograph

Table of general content

1. What **MSL-related** problem do I connect to?

2. Which **specific field** do I contribute to?

3. What's the greater field this is leading to?

4. What are my thesis plans?

Link to the MSL group

In acceleration physics, we'd like to take our SRF cavities to the extreme

But: thermal or magnetic quenches eventually occur

Link to the MSL group

known empirical result: impurities of niob can improve performance

Problem of interest: Which impurities lead to improvements and which make it worse?

observed for:

Link to the MSL group

Idea:

1. Take a piece of cavity material and analyze its crystallographic structure

3. Infer physical correlations

Truncated cone as a cavity sample on a mount, own photograph

Oxidation of Nb crystals

natural impurity

Heat treatments of cavities

intentional impurity

Analyzation of crystallographic structures via EXAFS

The general topic I am contributing to

Investigate absorption behaviour at certain energies

Information about coordination numbers and lattice constants

Lecture Schroer, 2024

Described by the quantum mechanical EXAFS - extended x-Ray absorption fine structure

Recap: Essence of quantum mechanics

In quantum mechanics some principles are replaced by others

It remains essential to **be clear about the model used**. What objects exist and which interactions can occur?

Basic model of EXAFS

$\xrightarrow{I_0} \xrightarrow{I} \xrightarrow{I}$

Interaction between an γ of a radiation source and two atoms (representing an solid): An absorbing atom and an reflecting atom, each having at least one **tightly bound** e^{-1}

Objective: What does the absorption curve look like?

Photoelectric effect:

What does the absorption curve look like? <u>Fermis golden rule:</u> Transition rate between an initial $|i\rangle$ and a final $|f\rangle$ eigenstate

Γ

of a system under a **perturbation** V is given by

$$f \leftarrow i = rac{2\pi}{\hbar} \rho(E_f) |\langle f | V | i \rangle|^2$$
 measure for the overlap of the states wave functions

more overlap

<u>Fermis golden rule</u>: Transition rate between an initial $|i\rangle$ and a final $|f\rangle$ eigenstate

of a system under a **perturbation** V is given by

$$\Gamma_{f\leftarrow i} = \frac{2\pi}{\hbar} \rho(E_f) |\langle f | V | i \rangle|^2 \quad \text{measure for the overlap} \\ \text{of the states wave functions}$$

More energetic photons ionize electrons less often

Photoelectric effect:

State overlap:

Now EXAFS comes into play:

The ionized electron $|f\rangle$ can get reflected at the neighboring atom and superpose with itself into $|f'\rangle = |f\rangle + |r\rangle$

$$\mu(E) = \mu_0(E)(1+\chi(E)) \propto |\langle f'|V|i\rangle|^2$$

Now EXAFS comes into play:

The ionized electron $|f\rangle$ can get reflected at the neighboring atom and superpose with itself into $|f'\rangle = |f\rangle + |r\rangle$

$$\mu(E) = \mu_0(E)(1+\chi(E)) \propto |\langle f'|V|i\rangle|^2$$

 $= |\langle f | V | i \rangle|^{2} + 2\operatorname{Re}(\langle f | V | i \rangle \overline{\langle r | V | i \rangle}) + |\langle r | V | i \rangle|^{2}$

Now EXAFS comes into play:

The ionized electron $|f\rangle$ can get reflected at the neighboring atom and superpose with itself into $|f'\rangle = |f\rangle + |r\rangle$

$$\mu(E) = \mu_0(E)(1+\chi(E)) \propto |\langle f'|V|i\rangle|^2$$

 $= |\langle f | V | i \rangle|^{2} + 2\operatorname{Re}(\langle f | V | i \rangle \overline{\langle r | V | i \rangle}) + |\langle r | V | i \rangle|^{2}$

 $\left| \begin{array}{c} \mu_0(E) \propto |\langle f | V | i \rangle |^2 \\ \chi(E) \propto \langle r | V | i \rangle \end{array} \right|$

Investigate $\chi(E)$ further

 e^{ikr} V is approx. proportional to a spherical wave Because of tight bond $\Rightarrow \chi(E) \propto \langle i | V | r \rangle \approx \int dr \delta(r) e^{ikr} \psi_{\text{refl}}(r) = \psi_{\text{refl}}(0)$

describes an oscillation

describes the downwards trend

Source: Newville, 2004

Photoelectric effect:

State overlap:

Reflection on neighboring atom:

Deduction of the EXAFS equation

Taking **additional aspects** into account leads to a proper description of EXAFS oscillation

The EXAFS equation

My thesis plans

deductive

Simulate EXAFS curves (varying concentration distributions)

compare with actual measurements for qualitative similarities

inductive

Analyze Nb samples (multiple heat treatments)

calculate concentration distributions

check for similarities between own theory and own measurements

State of affairs

Measurements of 3 samples at DELTA last week -

Sample 243: 3h@300°C Sample 245: 20h@250°C Sample 247: 48h@120°C

Used samples, own photograph

experimental setup, own photograph

Work in progress...

Overview of the taken measurements at DELTA. Each successfull scan took 23 min

apparent	ly bac	d meas	urem	ent				ans	scheir	nend go	f. sch	lechte	Messu	ung			not useabl	e but me	easured
Sample 243	ϑ =	= 0.1°	ϑ=	0.15°	ϑ =	= 0.17°	ð =	= 0.2°)	: 0.3°	રી =	: 0.5°	ર ી =	= 0.7°	θ	= 1°			
	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night			Beam history
# spectra:		6		8		7		3		5		4		3		4	istory	Beam	Beamshut afterwards:
300°C	34	62	38	65	43	68	47	71	50	76	53	86	56	88		59	l exafsscan		
	35	63	39	66	44	69	48	72	51	85	54		57			60			colibration
3h	36	64	40	67	45	5 70	49	73	52		55		58			61	l exafsscan	1	Calibration
	37		41		46	;		74	L I							89		1	
mid-T			42					75	5								can		magguramanta
																	exafsscan		measurements
Sample 245	ϑ=	= 0.1°	ϑ=	0.15°	ϑ=	= 0.17°	θ =	= 0.2°	θ =	0.3°	ર ી =	: 0.5°	ව =	= 0.7°	θ	= 1°			recalibration
	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	can		
# spectra:		5		5		5		5		5		5		5		4	l exafsscan	2	measurements
250°C	159	196	162	178	170)	208	181	210	184	213	187	216	190	219	193	can	2 C	
	160	197	163	179	171		209	182	211		214	188	217	191		194			new sample calibration
20h	161		164	180	172	2		183	212	186	215	189	218	192	2	195	can		measurements
	175			198	174	L.													recalibration
	176			199	200												can	3	moscuromonte
	177				201												l exafsscan		measurements
					203	8													recalibration
					204	Ļ											can		measurements
																		4	new sample calibration
Sample 247	ર ી =	= 0.1°	ર ી =	0.15°	ર ી =	= 0.17°	ϑ =	= 0.2°	ϑ =	: 0.3°	ર ી =	: 0.5°	ર ી =	= 0.7°	ϑ	= 1°	can		measurements
	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	exafsscan		measurements
# spectra:		6		7		7		6		6		6		6		6			recalibration
120°C	99	126	102	128	108	131	111	134	114	136	117	138	120	140	155	123	can		
	100	127	103	129	109	132	112	135	115	137	118	139	121	141		124	exafsscan	5	
48h	101	144	104	130	110	133	113	147	116		119		122			125	can	l J	measurements
				145		146	6		152		153		154			142	l exafsscan		
EXFEL Recipe																143	can		
																			recalibration
																	can	6	measurements
															1		l exafsscan		measurements

Setup of the beamline experiment

For EXAFS analysis at DELTA, Dortmund

