Preparatory Project

Automized Anomaly Detection via Unsupervised Machine Learning Trained on the OBACHT Dataset

Overview

- Goals
- Database OBACHT
- Anomaly Detection with Autoencoders
- Application
- Outview

Goals

1 find visual defects automatically

10th April '24

2 find correlations with cavity performance

Jens Kwasniok

Database - OBACHT

large database

~350,000 source images

high quality

- resolves structures up to 4μm
- 3 color channels 3,488x2,816 pixel each

high variety

- multiple stages of chemical preprocessing
- multiple vendors
- 9 cell / 1 cell

caveat

unsystematic scanns (e.g. some vendors are more reserved)

images of cavity **inner** surface!

Focus

- visual anomalies only
- equatorial region only
 - highest performance impact expected (highest surface mag. field)
 - 120,000 images left

DESY Report 2006-097 p. 67

ML Approach: GAN Autoencoder

Detection Principle

10th April '24

Jens Kwasniok

Anomaly!

unseen/uncommon structures

Detection Principle

Usage

normal anomalous

anomaly score (per image)

10th April '24 Jens Kwasniok 10

Autoencoder Principle

- 1 lossy! image compression via encoder E
- 2 image reconstruction via **decoder** D

10th April '24

Jens Kwasniok

Reconstruction Principle

- preserve `normal` features
- forget `anomalous` features

10th April '24

Jens Kwasniok

Decoder Architecture: CNN

Radford et al. 2016

Convolutional Neural Network

Encoder Architecture: reversed/transposed CNN

Application

Training Data

- manually selected ~25,000, normal' images
- spans across
 - multiple vendors
 - multiple processing stages
 - cell numbers per cavity (9 & 1)
 - → ,representative'

Anomaly Score Histogram

higher complexity of surface structure ↔ higher score

but: not necessarily a defect

Heatmap

mostly normal with some anomalies

anomaly not reconstructed

heatmap = difference score = average of heatmap false positive e.g. welding seam

- → has a lot of ,character '
- → fails to reconstruct
- → high score

true positive anomaly

- → 'unknown'
- → fails to reconstruct
- → high score

10th April '24

Jens Kwasniok

Challenges

- correlations with global properties of cavities
 - due to aggregation (difficult to find *the* spot)
 - global vs. local
- usable heatmap
 - pinpoint defects inside an image

Anomaly Scores Per Scan

Deep Dive: Latent Space

By Vendor

TSNE: projection* 2048D → 2D

color = **vendor**

clustering evolved unsupervised

* Does not strictly represent distance. Mapping is statistical.

10th April '24

Jens Kwasniok

Deep Dive: Latent Space

TSNE: projection 2048D → 2D

color = cavity scan

clustering evolved unsupervised

note: AE is not variational

Deep Dive: Latent Space

By Class

TSNE: projection 2048D → 2D

color = normal/anomalous/unclear/unclassified

as expected: anomalous is mapped as if normal

normal = training data

In Detail: Score per Scan

example for a ,**bad**' cavity (many visual anomalies + low max. field)

Autoencoder

- works best for
 - finding images which have **some anomaly**
- does not work for
 - pinpointing exact location of anomaly

Correlations

data taken from the Cavity DB hosted by DESY

- → unfortunately no correlations found (yet)
- challenges:
 - many local images vs few global cavity properties
 - unsystematic scans
 - traning data is across all stages of chemical preprocessing (or else not enough trainig data)

Correlations?

Example: OBACHT 0 RI only

aggregation: max

no correlations

10th April '24 Jens Kwasniok 28

Practical Advice

- the more **local** the **physical data** the better
 - e.g. single cell cavities
 - e.g. coloring the defects (per-pixel info; manually or temp. map) (see Schlegel et al 2019)
- ensure physical data and images are
 - machine friendly at all times
 - homogenious in shape
 - systematically obtained
- GANs produce images of subjectively better quality with worse reconstruction errors
- VAEs have wore reconstruction errors than AEs (preliminary result)

Summary

- unsupervised ML to detect anomalies
- Autoencoder
- Correlations?

Summary

- AE bad because anomalies are not localized enough
 - good for general score
 - bad for finding spot

Outview

- improve aggregation methods
- refine filtering of training data
 - e.g. focus on after chemical treatment only

Acknowledgements

Special thanks to:

- Antonín, Marc and Annika
- The OBACHT team
- The DESY Cavity Database Team

References

- Schlegel et al. 2019: DOI 10.1016/j.media.2019.01.010
- Radford et al. 2016: DOI 10.48550/arXiv.1511.06434
- Wenskat 2019: DOI 10.1088/1748-0221/14/06/P06021

Appendix

Intermezzo:

Some ML Recap

Neural Network

- sequence of functions (layers)
- applied in order
- simple, differential functions

• → **fitting** the curve to data

Fundamental Layer Types

• affine:

weighted sum of input + bias

$y_i = \sum_j w_j x_{ij} + b_i$

activation:

- leaky ReLU
- tanh

Convolutional Layer

- convolution:
 - stride ↔ shrink
 - here: compresses
- transposed convolution:
 - stride ↔ grow
 - pseudo-inverse
 - here: extrapolates

10th April '24

Jens Kwasniok

Side Note: Channels

- each pixel has multiple channels
 - e.g. Red Green Blue
- amount can change
 - e.g. convolution

ML Basics – Conv. Layer

3 color/feature channels

4 out of n feature channels

image from CIFAR10

Continuation

D

Architecture Details

image_dim = 256x256 latent_vec_dim = 2048 batch_size = 128 leaky_slope = 0.2 drop_prob = 0.1 feature_map_depth = 64

GAN Losses – Wasserstein + GP

$$\mathcal{L}_C = \mathbb{E}_{x \sim \mathbb{P}_r, z \sim \mathcal{N}} [\underbrace{-C(x)}_{\mathrm{real}} + \underbrace{C(G(z))}_{\mathrm{fake}} + \mathbf{gradientPenalty}]$$

$$\texttt{gradientPenalty} = \lambda \mathbb{E}_{\alpha \sim \mathcal{U}(0,1)} [\nabla_a \ C(a)|_{a=\alpha x + (1-\alpha)G(z)}]$$

$$\mathcal{L}_G = -\mathbb{E}_{z \sim \mathcal{N}} \left[\underbrace{C(G(z))}_{\text{fake as 'real'}} \right]$$

$$\mathcal{L}_E = \mathbb{E}_{x \sim \mathbb{P}_r}[\mathtt{MSE}(G(E(x)), x)]$$

Schlegl et al. 2019

Losses

Gradient

Mean Critic Scores

Adam GAN

```
input : \gamma (lr), \beta_1, \beta_2 (betas), \theta_0 (params), f(\theta) (objective)
                \lambda (weight decay), amsgrad, maximize
initialize: m_0 \leftarrow 0 (first moment), v_0 \leftarrow 0 (second moment), \widehat{v_0}^{max} \leftarrow 0
for t = 1 to ... do
      if maximize:
            q_t \leftarrow -\nabla_{\theta} f_t(\theta_{t-1})
      else
            q_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})
      if \lambda \neq 0
            q_t \leftarrow q_t + \lambda \theta_{t-1}
      m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t
     v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^2
      \widehat{m_t} \leftarrow m_t/(1-\beta_1^t)
     \widehat{v_t} \leftarrow v_t/(1-eta_2^t)
      if amsgrad
            \widehat{v_t}^{max} \leftarrow \max(\widehat{v_t}^{max}, \widehat{v_t})
           	heta_t \leftarrow 	heta_{t-1} - \gamma \widehat{m_t} / (\sqrt{\widehat{v_t}^{max}} + \epsilon)
      else
```

 $heta_t \leftarrow heta_{t-1} - \gamma \widehat{m_t} / ig(\sqrt{\widehat{v_t}} + \epsilonig)$

$$\gamma = 10^{-5}, \beta_1 = 0.25, \beta_2 = 0.999, \lambda = 0^{48}$$

Preprocessing

- center crop, resize & normalize images
- bundle as few files
 - → reduce IO overhead
- preserve meta data
 - → trace back to origin

MNIST Scores Histogram

scores (epoch 12)

scores (epoch 29)

10th April '24 50

Current State - Scores

Technical Details - Dataset

- dataset of OBACHT-0/E
 - ~20GB per crop cycle
 - ~600GB due to 30 croppings per image
- memory map large datasets
 - → data > RAM (still fast due to OS caching)

Technical Details - Networks

- for images 256x256x3
 - X M trainable parameters
 - VRAM ~Y GB

Technical Details

- Throughput using an NVIDIA A100 40GB
 - ~5min per 1,000 batches à 128 samples
 - → 100,000 iterations take ~8h
 - ca. 400,000 iterations needed for generator
 - → total training time in the order of few days

Some Machine Learning Basics

ML Basics – Training - Idea

- quanitify output of network(s) as loss (number)
- loss ↔ ,quality'
- incrementaly update network parameters to optimize loss (e.g. find minimum)

ML Basics – Training - Principle

$$g = \frac{d\mathcal{L}}{d\theta}$$
: gradient

$$\theta \leftarrow \theta + \operatorname{optim}(\nabla g)$$

loss function (averaged over batch)

Training Algorithm - Principle

per iteration:

randomly sample a batch of images

apply networks

calculate mean loss + gradient

update network parameters

ML Basics – Special Layers

- normalization:
 - batch
 - layer
- drop
 - → resilience

Latent Space by OBACHT batch

10th April '24 Jens Kwasniok