Superconducting resonant cavities design and material development for quantum computing and quantum sensing applications

Università degli Studi di Padova

INTRODUCTION

Università degli Studi di Padova

Superconducting Resonant Cavities

Most common application is particle accelerators

Important parameters:Cavity Quality factor (Q0)Accelerating fieldMeissner regime2 K or 4.2 K operation temperature

Quantum computing and sensing

Important parameters:

Both Meissner and Shubnikov regime

mK operation regime

Cavity Quality factor (Q_0)

 $Q_0 = \frac{G}{R_s}$ — Depends on shape and frequency Depends on material/surface treatments SUDE 2 OF 31

Quantum computing

Aluminum cavities for 3D transmon architecture

Design of a 7.46 GHz cavity

Fabrication using pure Al vs Al alloy

Characterization of the Cavity + Qubit Axion search

NbTi thin film on Cu cavities as haloscopes

Material & selection

Characterization

Fabrication

Characterization at 4 K

Aluminum cavities for 3D transmon architecture

Design of a 7.46 GHz cavity

Fabrication using pure Al vs Al alloy

Characterization of the Cavity + Qubit Axion search

NbTi thin film on Cu cavities as haloscopes

Material & Characterization

Fabrication

Characterization at 4 K

QUANTUM COMPUTING

Università degli Studi di Padova

Quantum computing

Aluminum cavities for 3D transmon architecture

Design of a 7.46 GHz cavity

Fabrication using pure Al vs Al alloy

Characterization of the Cavity + Qubit Axion search

NbTi thin film on Cu cavities as haloscopes

Material & & &

& Characterization

Fabrication

Characterization at 4 K

CAVITY DESIGN

Università degli Studi di Padova

CAVITY DESIGN

Università degli Studi di Padova

OHA

Surface resistance estimation

$$G = \frac{\omega_0 \mu_0 \int_V |\overline{H}|^2 dv}{\int_S |H|^2 ds} = 157.30 \Omega$$

$$\clubsuit$$
Using experimental value of Q_0
for the aluminum alloy cavity

$$\mathbf{R}_{s} = \frac{G}{Q_{0}} = (730 \pm 40) \,\mu\Omega \quad \Rightarrow \quad R_{s} = R_{ss} + R_{res}$$

CAVITY SIMULATION

Simulation can reproduce experimental values

Source	Q_0
Eigenmode simulation	$(2.16 \pm 1.2) \cdot 10^5$
Experimental	$(2.17 \pm 1.1) \cdot 10^5$

Alloy cavity and qubit fabricated at TII (Arab Emirates)

Move to Al 5N (99.999% purity)

Al alloy

M

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

Aluminum cavities for 3D transmon architecture

Design of a 7.46 GHz cavity

Fabrication using pure Al vs Al alloy

Characterization of the Cavity + Qubit Axion search

NbTi thin film on Cu cavities as haloscopes

Material & Characterization

Fabrication

Characterization at 4 K

 $\mathsf{SLIDE}\ \mathbf{10}\ \mathsf{OF}\ \mathbf{31}$

CAVITY FABRICATION

Università degli Studi di Padova

QUANTUM COMPUTING: SLIDE 11 OF 31

Aluminum cavities for 3D transmon architecture

Design of a 7.46 GHz cavity

Fabrication using pure Al vs Al alloy

Characterization of the Cavity + Qubit Axion search

NbTi thin film on Cu cavities as haloscopes

Material & Characterization

Fabrication

Characterization at 4 K

CAVITY CHARACTERIZATION

Università degli Studi di Padova

Measurements on pure Al cavity

CAVITY CHARACTERIZATION

Università degli Studi di Padova

Rabi spectroscopy

Ramsey spectroscopy

QUBIT CHARACTERIZATION

Università degli Studi di Padova

Università degli Studi di Padova

QUANTUM COMPUTING: SLIDE 17 OF 31

Quantum computing

Aluminum cavities for 3D transmon architecture

Design of a 7.46 GHz cavity

Fabrication using pure Al vs Al alloy

Characterization of the Cavity + Qubit

NbTi thin film on Cu cavities as haloscopes

Material & Characterization

Fabrication

Characterization at 4 K

AXIONS

Axions are a promising dark matter candidate

Axion predicted mass can vary of many orders of magnitude: our range of interest is $10^{-6} \ eV$ to $10^{-3} \ eV$

GHz frequency range

Conversion Power $P_{a\gamma \rightarrow \gamma} = k \cdot B^2 \omega_0 V \frac{Q_a Q_c}{Q_a + Q_c}$ Magnetic Field Axion Quality Factor (10⁶)

How to detect them?

 $\omega = 9GHz$

Quantum computing

Aluminum cavities for 3D transmon architecture

Design of a 7.46 GHz cavity

Fabrication using pure Al vs Al alloy

Characterization of the Cavity + Qubit Axion search

NbTi thin film on Cu cavities as haloscopes

Material & selection

Characterization

Fabrication

Characterization at 4 K

MATERIAL CHOICE

Università degli Studi di Padova

Accelerators Cavities – RF

Meissner state – no magnetic field

Magnets – DC

is a quite new regime for superconductive devices

Material Choice

Università degli Studi di Padova

Material	Тс	Bc2	Note
Nb	9.2 K	0.4 T	Not suitable at high Magnetic field
NbTi	~ 9.5 K	~ 14 T	Simple preparation
MgB ₂	~ 32 K	~ 15 T	Preparation is a challenge
Nb ₃ Sn	~ 18.3 K	~ 30 T	Preparation is a challenge
REBCO	~ 93 K	~ 100 T	Available in tapes

NbTi was the obvious choice (although not the best performing) to build and test a SC haloscope **for the first time**

MATERIAL CHOICE

Università degli Studi di Padova

AXION SEARCH: SLIDE 23 OF 31

MATERIAL CHOICE

Università degli Studi di Padova

AXION SEARCH: SLIDE 24 OF 31

Quantum computing

Aluminum cavities for 3D transmon architecture

Design of a 7.46 GHz cavity

Fabrication using pure Al vs Al alloy

Characterization of the Cavity + Qubit

Material

selection

NbTi thin film on Cu cavities as haloscopes

& Characterization

Fabrication

Characterization at 4 K

FABRICATION

Università degli Studi di Padova

DC Magnetron Sputtering

- Single NbTi target
- Ar pressure $6 \cdot 10^{-3}$ mbar
- T substrate 500 °C
- Film thickness $2.5-3.5~\mu\text{m}$
- No bias voltage

Quantum computing

Aluminum cavities for 3D transmon architecture

Design of a 7.46 GHz cavity

Fabrication using pure Al vs Al alloy

Characterization of the Cavity + Qubit

Material

selection

NbTi thin film on Cu cavities as haloscopes

& Characterization

Fabrication

Characterization at 4 K

SLIDE 28 OF 31 AXION SEARCH:

2

0

3

4

5

6

B(T)

7

8

9

10

11

12

7 GHz

CAVITY CHARACTERIZATION

-4,2 K

-7,5 K

UNIVERSITÀ **DEGLI STUDI** di Padova

CAVITY CHARACTERIZATION

Università degli Studi di Padova

AXION SEARCH: SLIDE 29 OF 31

CAVITY CHARACTERIZATION

Defects on the cavity surface

Due to multiple surface treatments

Pitting + NbTi coating on Cu cones

All @2T and 4K

CONCLUSIONS

QUANTUM COMPUTING

- Pure Al cavity with non-optimized surface showed $Q_L = (2.2 \pm 1.0) \cdot 10^5$
- The Qubit was successfully characterized but needs fabrication optimization

AXION SEARCH

- Four NbTi on Cu cavities fabricated
- Good performance obtained compared to state-of-the-art

Giovanni Marconato, Quantum Technologies for Fundamental Physics Workshop, Sam Posen, Quantum Technologies for Fundamental Physics Workshop, Erice, Italy, Sept 2023

NbTi

7 GHz

9 · 10⁵

Erice, Italy, Sept 2023

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

SLIDE 31 OF 31

Woohyun Chung, Quantum Technologies for Fundamental Physics Workshop, Erice, Italy, Sept 2023

REBCO

REBCO

5.4 Gz

THANK YOU FOR YOUR ATTENTION

Università degli Studi di Padova

QUANTUM COMPUTING: SLIDE 33 OF 31

Università degli Studi di Padova

 $d \cdot E$ $p \propto \cos^2 \left(\pi \tilde{\Omega}_R t + \phi\right) e^{-\frac{t}{T_1}}$ $\widetilde{\Omega}_R = \sqrt{\Omega^2 + \Delta^2}$ Ω ħ

QUANTUM COMPUTING: SLIDE 34 OF 31

Università degli Studi di Padova

Università degli Studi di Padova

QUANTUM COMPUTING: SLIDE 36 OF 31

Università degli Studi di Padova

OHA

QUANTUM COMPUTING: SLIDE 37 OF 31

Università degli Studi di Padova

Semertzidis and Youn, Sci. Adv. 8, eabm9928 (2022)

Università degli Studi di Padova

Fluxon Dissipation

Università degli Studi di Padova

NbTi pinning force dependency on Ti content

J. C. McKinnell, P. J. Lee, and D. C. Larbalestier, IEEE Transactions on Magnetics, 1989

H. Hillmann and K. Best, IEEE Transactions on Magnetics, 1977

AXION SEARCH: SLIDE 40 OF 31

Università degli Studi di Padova

 $Nb_{0.31}Ti_{0.69}$ is better or similar at most

AXION SEARCH: SLIDE 41 OF 31

Hybrid structure advantages

Using copper ends the quality factor is limited $Q_0^{max} \simeq 1.3 \cdot 10^6$

But less dissipation due to fluxon movement!

AXION SEARCH: SLIDE 42 OF 31

• Nb₃Sn by DC Magnetron Sputtering for high Magnetic field applications

Material	Тс	Hc2
NbTi	~ 9.5 K	~ 14 T
Nb ₃ Sn	~ 18.3 K	~ 30 T

• Nb₃Sn by DC Magnetron Sputtering for high Magnetic field applications

AXION SEARCH: SLIDE 44 OF 31