

Sensitivity Measurements for Mid-T heat treated **SRF** Cavities

Jennifer Ademoye - SRF R&D team – Jan 15th 2025

Motivation: Higher Performance in RF Cavities

- Interest in Cavities with higher performance (high quality factor Q_0 and high accelerating field E_{acc})
- ullet Q_0/E_{acc} curves higher after mid-T heat treatment compared to no mid-T
- Also higher Sensitivity probably due to flux trapping after mid T heat treatment
- Sensitivity defined as $S = \Delta R_s/B_{trapped}$: Ratio of surface resistance between two measurement types (with and without ext. B) per trapped magnetic field
 - → Investigation of the correlation between Sensitivity S and mid-T heat treatment

Physical Measurement Properties

Mid-T Heat Treatment

- Medium temperature approx. 250-350 °C
- ~3-20 h

- Mid-T \rightarrow higher $Q_0/Eacc$ curve, but earlier quench
- Sensitivity increases with mid-T heat treatment

[Impact of medium temperature heat treatment on flux trapping sensitivity in srf cavities, P. Dhakal, et al. arXiv:2405.10085v1, 2024, Correlation of SRF performance to oxygen diffusion length of medium temperature heat trrated cavities*. arXiv:2407.07779v1, 2024]

Jennifer Ademoye - SRF R&D team — Jan 15th 2025

Quality factor Q_0 vs. Accelerating field E_{acc}

 Q_0 : defined as stored energy per dissipated power in cavity walls

Influences: shape, electropolishing techniques, cleanliness of niobium surface, mid-T heat treatment, etc.

E_{acc:} Average accelerating electric field that electron sees during transit through cavity

To find R_s and later S we use:

$$R_s(E_{acc}) = G/Q_0(E_{acc})$$

with Geometry factor G=271.5 Ω

Sensitivity S and Surface Resistance R_s

Sensitivity $S = \Delta R_s / B_{trapped}$

dependent on pinning centres in bulk material

Surface resistance:

$$R_{s}(T,B) = R_{BCS}(T) + R_{res} + R_{flux}(B)$$

 R_{BCS} : temperature dependent contribution by Bardeen Cooper Schrieffer (BCS) theory

 $R_{flux}(B)$:impact by normal conducting pinning centers with dependence on magnetic field

 R_{res} :constant residual resistance

Magnetic Field and the Meissner state

SC:
$$T < T_c = 9.2 K$$
, B $<$ B_c = 0.22 T for 2 K

$$B_{\text{trapped}} = ((B_{nc} - B_{sc})/(M*B_{nc} - B_{nc}))*B_{\text{ambient}}$$

Meissner factor $M = B_{sc ,Meissner} / B_{nc}$: difference between theoretical possible and experimentally measured field

M derived from simulation data considering cavity geometry and ideal Meissner state

 B_{nc} : magn. field in normal conducting state

 $\overline{B_{sc}}$: magn. field in superconducting state

Measurement Process

Single-cell SRF Cavity

- -Niobium SRF cavity
- -Two 3D Bartington magnetosensors for magnetic field measurements
- -Three 1D Bartington magnetosensors, z-axis

Measurement of magnetic field lines at sensors' location

Challenges

- -Low Pass Filters: filter out interference signals in 3D sensors that probably stem from conduction wires
- -Assembly of electronic rod deviating from Bartington® recommendation

Cavity Measurement Process

Two different measurement modii: with/without Helmholtz-coil for determining $\Delta R_s \rightarrow S$

Expected magnetic field with activated Helmholtz coils at equator by calculation: 7.2 μ T, for I = 23 mA

Ambient field inside concrete pit(without insert): ≤100 nT (offset), included in measured magnetic background field

Results for Cavity 1Z12

Measurement Process

New single cell medium grain niobium cavity

No mid-T heat treatment

XFEL treatment: 800 °C+ low-T 120 °C

- 1. 1st baseline measurement
 - -cooldown to 2 K, $B_{ext} = 0$
- 2. Magnetic field measurement
 - -warmup to 40 K, $B_{ext} \approx 7.2 \,\mu\text{T}$, cooldown to 2 K
- 3. 2nd baseline measurement
- -warmup to 20 K, cooldown to 2 K, B_ext = 0
- 4. Magnetic field measurement
- -warmup to 20 K, $B_{ext} \approx 7.2 \mu T$, cooldown to
- 4 K, B_{ext} = 0, cooldown to 2 K

1st baseline measurement

 1^{st} baseline measurement -cooldown to 2 K, $B_{ext} = 0$

Cooldown from 100 K to 2 K

- B1,z: 3D Sensor z-axis (equator)
- B2, z: 3D Sensor z-axis(equator)
- A1: 1D Sensor (upper beam pipe)
- A2: 1D Sensor (equator)
- A3: 1D Sensor (lower beam pipe)

Baseline measurement ($B_{ext} = 0$)

Difference in field between two 3D sensors: $0.1~\mu T$, expected ambient field $\leq 100~n T$

Transition T_c

Expectation: no change in magnetic field behaviour as no B_{ext}

1st Magnetic field measurement

Transition T_c Expectation: rise in magnetic values at T_c

field measurement -warmup to 40 K, $B_{ext} \approx 7.2 \ \mu\text{T}$, cooldown to 2 K

Expectation: higher B values compared to baseline, agreement(?) with calculated value ${\sim}7.2~\mu T$

Difference between 3D sensors: 0.3 μT

 2^{nd} baseline measurement -warmup to 20 K, cooldown to 2 K, $B_{ext} = 0$

Cooldown to 2 K

Baseline measurement ($B_{ext} = 0$)

Expectation: values expected compare to 1^{st} baseline measurement, expected ambient field $\leq 100~nT$ Difference between 3D sensors: $0.1~\mu T$

Comparison baseline measurements

2nd Magnetic field measurement

Field measurement -warmup to 20, $B_{ext} \approx 7.2 \mu T$, cooldown to 4 K, $B_{ext} = 0$, cooldown to 2 K

Expectation: magnetic field values expected lower as in first magnetic field measurement as field not applied during measurement

Difference between 3D sensors: $\sim 1 \mu T$

Universität Hamburg

Comparison magnetic field measurements

1st magnetic field measurement

2nd magnetic field measurement

With B_{ext} : trapped magnetic field results in lower Q_0 because of disturbance of the Meissner effect Without B_{ext}: higher performance of Meissner effect

Near-future Outlook

- -Understanding data: differences in sensors, noise in data, validity of results
- -Determining S from Q_0/E_{acc} measurements
- -Comparison between XFEL-type and mid-T baked cavities

Further Resources!

- Correlation of srf performance to oxygen diffusion length of medium temperature heat treated cavities*,
 C. Bate, et al. arXiv:2407.07779v1, 2024.
- Further improvement of medium temperature heat treated srf cavities for high gradients*, L. Steder, et al. arXiv:2407.12570v1, 2024.
- Impact of medium temperature heat treatment on flux trapping sensitivity in srf cavities*, P. Dhakal, et al. arXiv:2405.10085v1, 2024.
- Impact of medium temperature heat treatments on the magnetic flux expulsion behavior of srf cavities*, J. C. Wolff, et al. 2023.
- Rf superconductivity for accelerators, H.
 Padamsee, et al. (book)