Sensitivity Measurements for Mid-T heat treated **SRF** Cavities Jennifer Ademoye - SRF R&D team – Jan 15th 2025 #### Motivation: Higher Performance in RF Cavities - Interest in Cavities with higher performance (high quality factor Q_0 and high accelerating field E_{acc}) - ullet Q_0/E_{acc} curves higher after mid-T heat treatment compared to no mid-T - Also higher Sensitivity probably due to flux trapping after mid T heat treatment - Sensitivity defined as $S = \Delta R_s/B_{trapped}$: Ratio of surface resistance between two measurement types (with and without ext. B) per trapped magnetic field - → Investigation of the correlation between Sensitivity S and mid-T heat treatment # Physical Measurement Properties #### Mid-T Heat Treatment - Medium temperature approx. 250-350 °C - ~3-20 h - Mid-T \rightarrow higher $Q_0/Eacc$ curve, but earlier quench - Sensitivity increases with mid-T heat treatment [Impact of medium temperature heat treatment on flux trapping sensitivity in srf cavities, P. Dhakal, et al. arXiv:2405.10085v1, 2024, Correlation of SRF performance to oxygen diffusion length of medium temperature heat trrated cavities*. arXiv:2407.07779v1, 2024] Jennifer Ademoye - SRF R&D team — Jan 15th 2025 #### Quality factor Q_0 vs. Accelerating field E_{acc} Q_0 : defined as stored energy per dissipated power in cavity walls Influences: shape, electropolishing techniques, cleanliness of niobium surface, mid-T heat treatment, etc. E_{acc:} Average accelerating electric field that electron sees during transit through cavity To find R_s and later S we use: $$R_s(E_{acc}) = G/Q_0(E_{acc})$$ with Geometry factor G=271.5 Ω #### Sensitivity S and Surface Resistance R_s Sensitivity $S = \Delta R_s / B_{trapped}$ dependent on pinning centres in bulk material Surface resistance: $$R_{s}(T,B) = R_{BCS}(T) + R_{res} + R_{flux}(B)$$ R_{BCS} : temperature dependent contribution by Bardeen Cooper Schrieffer (BCS) theory $R_{flux}(B)$:impact by normal conducting pinning centers with dependence on magnetic field R_{res} :constant residual resistance #### Magnetic Field and the Meissner state SC: $$T < T_c = 9.2 K$$, B $<$ B_c = 0.22 T for 2 K $$B_{\text{trapped}} = ((B_{nc} - B_{sc})/(M*B_{nc} - B_{nc}))*B_{\text{ambient}}$$ Meissner factor $M = B_{sc ,Meissner} / B_{nc}$: difference between theoretical possible and experimentally measured field M derived from simulation data considering cavity geometry and ideal Meissner state B_{nc} : magn. field in normal conducting state $\overline{B_{sc}}$: magn. field in superconducting state ## Measurement Process #### Single-cell SRF Cavity - -Niobium SRF cavity - -Two 3D Bartington magnetosensors for magnetic field measurements - -Three 1D Bartington magnetosensors, z-axis Measurement of magnetic field lines at sensors' location #### Challenges - -Low Pass Filters: filter out interference signals in 3D sensors that probably stem from conduction wires - -Assembly of electronic rod deviating from Bartington® recommendation #### Cavity Measurement Process Two different measurement modii: with/without Helmholtz-coil for determining $\Delta R_s \rightarrow S$ Expected magnetic field with activated Helmholtz coils at equator by calculation: 7.2 μ T, for I = 23 mA Ambient field inside concrete pit(without insert): ≤100 nT (offset), included in measured magnetic background field # Results for Cavity 1Z12 #### Measurement Process New single cell medium grain niobium cavity No mid-T heat treatment XFEL treatment: 800 °C+ low-T 120 °C - 1. 1st baseline measurement - -cooldown to 2 K, $B_{ext} = 0$ - 2. Magnetic field measurement - -warmup to 40 K, $B_{ext} \approx 7.2 \,\mu\text{T}$, cooldown to 2 K - 3. 2nd baseline measurement - -warmup to 20 K, cooldown to 2 K, B_ext = 0 - 4. Magnetic field measurement - -warmup to 20 K, $B_{ext} \approx 7.2 \mu T$, cooldown to - 4 K, B_{ext} = 0, cooldown to 2 K #### 1st baseline measurement 1^{st} baseline measurement -cooldown to 2 K, $B_{ext} = 0$ Cooldown from 100 K to 2 K - B1,z: 3D Sensor z-axis (equator) - B2, z: 3D Sensor z-axis(equator) - A1: 1D Sensor (upper beam pipe) - A2: 1D Sensor (equator) - A3: 1D Sensor (lower beam pipe) #### Baseline measurement ($B_{ext} = 0$) Difference in field between two 3D sensors: $0.1~\mu T$, expected ambient field $\leq 100~n T$ **Transition T**_c Expectation: no change in magnetic field behaviour as no B_{ext} #### 1st Magnetic field measurement **Transition** T_c Expectation: rise in magnetic values at T_c # field measurement -warmup to 40 K, $B_{ext} \approx 7.2 \ \mu\text{T}$, cooldown to 2 K Expectation: higher B values compared to baseline, agreement(?) with calculated value ${\sim}7.2~\mu T$ Difference between 3D sensors: 0.3 μT 2^{nd} baseline measurement -warmup to 20 K, cooldown to 2 K, $B_{ext} = 0$ Cooldown to 2 K #### Baseline measurement ($B_{ext} = 0$) Expectation: values expected compare to 1^{st} baseline measurement, expected ambient field $\leq 100~nT$ Difference between 3D sensors: $0.1~\mu T$ #### Comparison baseline measurements #### 2nd Magnetic field measurement Field measurement -warmup to 20, $B_{ext} \approx 7.2 \mu T$, cooldown to 4 K, $B_{ext} = 0$, cooldown to 2 K Expectation: magnetic field values expected lower as in first magnetic field measurement as field not applied during measurement Difference between 3D sensors: $\sim 1 \mu T$ #### Universität Hamburg #### Comparison magnetic field measurements 1st magnetic field measurement 2nd magnetic field measurement With B_{ext} : trapped magnetic field results in lower Q_0 because of disturbance of the Meissner effect Without B_{ext}: higher performance of Meissner effect ## Near-future Outlook - -Understanding data: differences in sensors, noise in data, validity of results - -Determining S from Q_0/E_{acc} measurements - -Comparison between XFEL-type and mid-T baked cavities #### Further Resources! - Correlation of srf performance to oxygen diffusion length of medium temperature heat treated cavities*, C. Bate, et al. arXiv:2407.07779v1, 2024. - Further improvement of medium temperature heat treated srf cavities for high gradients*, L. Steder, et al. arXiv:2407.12570v1, 2024. - Impact of medium temperature heat treatment on flux trapping sensitivity in srf cavities*, P. Dhakal, et al. arXiv:2405.10085v1, 2024. - Impact of medium temperature heat treatments on the magnetic flux expulsion behavior of srf cavities*, J. C. Wolff, et al. 2023. - Rf superconductivity for accelerators, H. Padamsee, et al. (book)