Next-Generation Superconducting RF

Matthias Liepe

Professor of Physics; Head Cornell SRF Group Cornell University

U.S. DOE award DE-SC0008431, U.S. DOE award DE-SC0021038, U.S. DOE award DE-SC0024137, U.S. DOE award DE-SC0024907, National Science Foundation (NSF) award DMR-0807731, National Science Foundation (NSF) award PHY-1549132.

Outline

- Cornell SRF
- High Current Frontier:
 - -Cornell high current SRF R&D
- Efficiency / Cost Frontier:
 - -Cornell Nb₃Sn Program
 - Other Next-gen Material Research

Cornell SRF

Accelerator Science

Research

- X ray sources and colliders for nuclear & particle physics
- Electron microscopes

Since 1943, a Nobel Prize in **Physics** has been awarded to research benefiting from accelerators every 3 years.

Since 1997, the same has been true of **Chemistry**.

Industry

- Food & product safety
- Contraband detection
- Semiconductor fabrication
- · Bridge safety

Medicine

Tumor detection and treatment

~30,000 industrial and medical accelerators are in use, with annual sales of \$3.5 B and 10% growth per year.

Cornell Accelerator R&D Program

Cornell is a world leader in particle accelerators:

- CESR leads studies of beam phenomena in circular accelerators
- Cornell invented and advanced high current Energy Recovery Linacs
- Cornell's high-brightness sources and superconducting RF programs
 - Cornell pioneered and is a leading innovator in the SRF acceleration systems.
- Cornell's graduate program in accelerator science

Cornell Accelerator R&D Program

Fundamental Accelerator Research

 NSF Science and Technology Center led by Cornell with 10 universities, 3 national labs

 Storage ring beam dynamics R&D

 Superconducting RF R&D

Photocathode / bright electron sources R&D

On-Campus Accelerators

CESR / CHESS

• CBETA / ERL prototype

Center for Bright Beams (CBB)

Center for Bright Beams (CBB)

An NSF Science and Technology Center **led by Cornell** with **8 universities**, **3 national labs** from the US and Canada, and industry partners.

CBB Vision:

Better particle beams for applications ranging from giant colliders to tabletop electron microscopes enabling new opportunities for science and industry.

CBB Mission:

- Transform the reach of electron beams by increasing their brightness x100 and reducing the cost and size of key enabling technologies.
- Transfer the best of these technologies to national labs and industry.

Northern Illinois University

UNIVERSITY

Center for Bright Beams (CBB)

Theme: Beam Production

Goal: Methods for x100 brighter electron beams through better photocathodes.

Strategy: Use ab initio physics and surface chemistry to identify

promising materials and approaches, then fabricate, characterize and test them.

Theme: Beam Acceleration

Goal: Methods for x10 lower power losses and x2 gradient.

Strategy: Harness **condensed matter physics** and **surface chemistry** to understand RF superconductivity and learn to control the surfaces of niobium and compound superconductor cavities.

Theme: Beam transport and storage

Goal: Methods for x10 brighter beams through mastery of the non-linear effects that reduce brightness, limit acceptance and induce instabilities.

Strategy: Use the tools of **nonlinear dynamics** to analyze dynamic aperture and test strategies they suggest for limiting emittance growth.

Multidisciplinary approach ⇒ Brighter electron beams

Cornell Superconducting RF Group

Cornell Superconducting RF Program

Convergence
research in
accelerator
physics, superconductivity and
materials
science:
Transformative

understanding of superconductivity and superconductor growth Energy and environment:

Enabling sustainable science via energy efficiency

Societal impact:

Accelerators for medicine, environment, industry...

Workforce devolvement:

Scientists
prepared to
join the
workforce in
an area of
critical need

Quantum computing (3D qubits)

Dark matter detectors

Lab Connections

Superconducting RF Lab at Cornell

Superconducting RF (SRF) Cavities

- SRF cavities accelerate charge particle beams very efficiently
 - Superconducting ⇒ Q>10¹⁰
 - High Fields (~50 MV/m)
- "Gold-standard" for particle acceleration
- Unique test vehicle to study superconducting response under extreme conditions (high fields and high frequency)

Slowed down by factor of approximately 4x109

SRF Cavity Performance Figures of Merit

Superconducting RF (SRF) Cavities

Inner surface layer (few 100 nm) determines RF performance of the cavity!

⇒ Optimization of RF performance by nm-scale <u>design</u> of this layer!

History of SRF (at Cornell)

A rapid Growth in SRF Application

Fundamental SRF and materials research, improved growth methods and preparation

Immediate advances in energy reach of accelerators and/or beam intensity

SRF: Current State of the Art

- All SRF cavities currently in operation use Niobium as the superconducting material
- Current generation of SRF cavities has been transformational for accelerator driven sciences, but high cost and complexity limit current use in science and prevent small-scale university and industrial applications

High Current Frontier

Cornell high current SRF R&D

High Beam Current and Higher-Order Modes

- Bunch excites EM cavity eigenmodes
- Short ps bunches will excite 1000s of HOMs up to f>100 GHz.
- High current -> high average HOM power per cavity
- Challenge: intercept HOM power and suppress excitation of HOMs

High Beam Current: The Challenge

Resonant Monopole Mode Excitation if f_{HOM}=N·f_{bunch}

 $P_{HOM} \propto Q_{HOM} I_{beam}^2$

To increase beam current by factor 10 to 100:

- ⇒ Need to increase HOM damping (further lower Q) by factor 100 to 10,000!
- \Rightarrow While keeping Q of accelerating mode at >10¹⁰

<u>Dipole Modes:</u> Beam instability at high currents

Cavities with dipole higher-order mode

Example: Energy-Recovery-Linacs R&D

Fixed-Field Alternating Gradient Accelerator (FFAG) ERL Prototype under construction at Cornell

- First SRF multi-turn (4 turn) ERL
- First ERL using FFAG recirculating arcs
- Prototyping of essential ERL components

Cornell ERL Injector Cryomodule

Pushing the Envelope in Many Ways

SRF cavity: design for high beam current

Frequency tuner: stabilize cavity length on nm scale

RF input coupler: design for high power

HOM damper: design for strong **HOM** suppression

Module design: support high cryo loads and provide excellent alignment

Injector Module Assembly at Cornell

Does it work? Cornell High Brightness Injector

- 75 mA <u>cw</u> beam accelerated by 1.3 GHz SRF cavities (7x previous record!)
 - ~ 50% AC to beam power efficiency
- Very small beam emittance near theoretical photo-cathode limit

Appl. Phys. Lett. 102, 034105 (2013); doi: 10.1063/1.4789395

Results from the CBETA Injector SRF Module

- ✓ No signs of beam instability or excessive heating by HOMs
- √ HOM spectrum in good agreement with simulation results
- ✓ Excellent HOM damping with typical Qs of a few 1000

CBETA ERL Main Linac Cryomodule

First ever high-current, high efficiency (high Q₀) SRF linac module.

CBETA ERL HOM Damping Solution

- Beam tube diameter optimized
 - -to trap accelerating mode in cavity and
 - -to **propagate** all HOMs
- RF absorbers in the beam pipes between the cavities
 - √ Simple HOM damping design
 - ✓ Broadband way of HOM damping

Cavity Design for High Currents

Cell shape optimization

- ~20 free parameters
- 1000's of eigenmodes
- Impact of cell shape errors

Supports beam current >400 mA (previous record: 10 mA)

ERL 1-Cavity Prototype Module

7-cell prototype 1.3 GHz cavity

Excellent HOM damping in agreementwith simulations

Does it work? Results from the Prototype Module

Record Beam Performance

- High CW currents >40 mA
- No significant heating from HOMs
- No sign of beam instability or weakly damped modes

Record Cavity RF Performance

 Record (at that time) Q₀ for cavity accelerating mode:

 $Q(2.0 \text{ K}) = 3.5 \times 10^{10}$

 $Q(1.8 \text{ K}) = 6 \times 10^{10}$

 $Q(1.6 \text{ K}) = 1 \times 10^{11}$

Nuclear Instr. & Meth. in Physics Research A (2013)

http://dx.doi.org/10.1016/j.nima.2013.07.021

Main Linac Module Assembly at Newman Lab

Main Linac Module Installation at Wilson Lab

Video credit: Rick Ryan, CLASSE

Does it work? Results from the Main Linac Module

- **✓ Cavity performance meets specifications**
- ✓ Excellent HOM damping in agreement with simulations

CBETA

1-Turn ERL Operation

- Transmission 99.6 ± 0.1%; energy recovery > 99.8%
- Measured up to 8 μA
- Each cavity accelerates beam without receiving external power for it.

4-Turn ERL Operation

Efficiency / Cost Frontier:

Cornell Nb₃Sn Program

A15 Superconductors

Compour	nd T _c	Compoun	d T _c	Compour	nd T_c
Ti ₃ Ir	4.6	Nb ₃ Os	0.94	Mo ₃ Ir	8.1
Ti ₃ Pt	0.49	Nb_3Rh	2.5	Mo_3Pt	4.56
Ti_3Sb	5.8	Nb ₃ Ir	1.76	Mo_3A1	0.58
Zr_3Au	0.92	Nb_3Pt	10	Mo_3Ga	0.76
Zr ₄ Sn	0.92	Nb ₃ Au	11	Mo_3Si	1.3
Zr ₃ Pb	0.76	Nb ₃ Ai	18.9	Mo ₃ Ge	1.4
V_3Os	5.15	Nb ₃ Ga	20.3	Mo ₂ Tc ₃	13.5
V_3Rh	0.38	Nb ₃ In	8	Mo₃Re	15
V_3Ir	1.39	Nb₃Ge	23		
V_3N_i	0.57	Nb ₃ Sn	18.3		
V_3Pd	0.08	Nb_3Bi	2.25		
V_3Pb	3.7	Ta _{4.3} Au	0.58		
V_3Au	3.2	Ta ₃ Ge	8		
V_3A1	9.6	Ta ₃ Sn	6.4		
V ₃ Ga	15.4	Ta ₃ Sb	0.72		
V ₃ In	13.9	Cr ₃ Ru	3.43		
V ₃ Si	17.1	Cr ₃ Os	4.03		
V_3 Ge	7	Cr ₃ Rh	0.07		
V_3Sn	4.3	Cr ₃ Ir	0.17		
V_3Sb	8.0	Mo_3Os	11.68		

Table adapted from https://doi.org/10.1016/0011-2275(75)90019-3

- Several A15 superconductors hold promise for SRF with critical T of 15 – 23 K
- Many of these are not stable in bulk and/or at lower temperature
 - Need non-equilibrium growth processes
- Nb₃Sn is stable and currently the most developed A15 material for SRF

Nb₃Sn: A Potential Gamechanger

Increased Accelerating Field

	Niobium	Nb ₃ Sn
Superheating field	240 mT	420 mT
Max. E _{acc} (theoretical limit)	55 MV/m	100 MV/m

Lower Cooling Cost and Complexity

	Niobium	Nb ₃ Sn
Critical Temperature T _c	9 K	18 K
Q ₀ at 4.2 K	6 x 10 ⁸	6 x 10 ¹⁰

 Q_0 given for 1.3 GHz ILC-shape cavities

Huge potential, but no success (prior to Cornell's Nb₃Sn work)

Nb₃Sn Challenge: Stoichiometry and T_c

Nb₃Sn Phase Diagram

T_c vs. Tin Content

Blue: tin Red: niobium

A. Godeke, Supercond. Sci. Tech, 2006

More Nb₃Sn Challenges

- Material is brittle
- Low thermal conductivity

Thin films avoid/reduce these

- Small coherence length $\xi \sim 3 4$ nm
 - Sensitive to small defects
 - Small first critical field H_{c1}
 - ⇒ Need to operate in the flux free metastable Meissner state
 - ⇒ Need high quality Nb₃Sn films!

Penetration Layer... Only Thin Films Needed

Nb₃Sn is brittle and has poor thermal conductivity

- Only films possible for SRF
- OK since RF field only penetrates ~100 nm, but more complex fabrication required

Cornell Nb₃Sn Program

Started 2011, funded by DOE.

Tin Vapor Diffusion Growth of Nb₃Sn

S. Posen and M. Liepe, Phys. Rev. ST Accel. Beams 15, 112001 (2014).

Nb₃Sn Coatings

Nb₃Sn forms a polycrystalline layer on the surface of the niobium

Nb₃Sn Film Growth Study

Cornell 1.3 GHz Nb₃Sn Cavity Breakthrough 4.2K Performance

S. Posen and M. Liepe, Phys. Rev. ST Accel. Beams 15, 112001 (2014).

Drastic Reduction in Cryogenic Losses

>60%
reduction in
AC cooling
power

 Simplified cryo system (4.2K vs 2K operation)

Nb₃Sn SRF: Technical Challenges

Nb₃Sn is a brittle material

• Nb₃Sn/Nb (Nb₃Sn/Cu) bimetallic

- ⇒ Mechanical stress can result in cracks in Nb₃Sn films
- ⇒ Need updated / improved handling and cavity tuning protocols
- ⇒ Thermoelectric currents can result in trapped magnetic flux and thus higher RF losses
- ⇒ Need slow cool down with small spatial thermal gradients across cavity

Nb₃Sn Film Growth Challenges

Surface roughness

- Increases a local magnetic field
- Early flux entry / quench

Nb₃Sn forms a polycrystalline layer on the surface of the niobium

Nonuniformity

- Sn rich / poor areas have much lower Tc
- Variation in film thickness

Sn Rich / Poor Areas

Two important contributions to surface resistance at 4.2K:

- R_{res} from trapped flux
 - => Improve magnetic shielding and cool down uniformity

- At higher temperatures (≥4K): "normal" Nb₃Sn gap dominates losses
- At lower temperatures (≲3K): second, small gap dominates losses
- Ratio p ~ 10⁻⁵

Cornell Nb₃Sn Electroplating Achievement

Electroplating-based pre- deposition of Sn onto Nb

Thermal Conversion to stoichiometric Nb₃Sn

Sn film Nb substrate Nb₃Sn film Nb substrate

Z. Sun, et al., Supercond. Sci. Technol. 36 115003 (2023).

Advantages:

- Promotes uniform distribution of nucleation (reduced surface roughness)
- Provides sufficient Sn supply in critical times
- Easy scale-up to full accelerator cavity size

Cornell Nb₃Sn Electroplating Nb₃Sn Growth: Performance

- ~2x lower surface roughness
- ~2x lower BCS surface resistance

Impact of Nb₃Sn Morphologies on SRF Performance

Example: Impact of Sn-rich islands on vortex entry field

 $|\psi|^2$ at an Applied Field of 322.59 mT

	Partially Embedded Sn Island		Fully Embedded Sn Island	
Cubic Island Side Length (nm)	$\mu_0 H_{vort}$ (mT)	% decrease from H_{sh}	$\mu_0 H_{vort}$ (mT)	% decrease from H_{sh}
50	343.4	19.2%	313.65	26.2%
100	322.59	24.2%	274.55	35.4%
200	300.9	29.2%	228.65	46.2%

S.A. Willson, A. Harbick, et al., PHYSICAL REVIEW RESEARCH 6, 043133 (2024)

Signature of Quench in Nb₃Sn

- Weak dependence on RF frequency
- So significant change vs T (1.7K to 4.2K)
- Nb₃Sn cavity field limited by localized defects
- Just below quench: Quantized jumps in losses
 - Vortex entry?

Thinner Nb₃Sn Coatings

Maximum Nb₃Sn cavity fields currently limited by small, localized defects.

- Nb₃Sn has very poor thermal conductivity.
 - ⇒ Nb thermally stabilizes Nb₃Sn and delays thermal runaway (quench)
 - ⇒ Thinner Nb₃Sn layers lead to higher quench fields for same defect (but can't make them too thin)
 - ⇒ Challenge is to achieve uniform thin films

Copper substrate could improve thermal stability further.

R. D. Porter, Ph.D. thesis, Phys, Dept., Cornell University, Ithaca, United States, 2021

Smale-Scale Applications of SRF Technology?

Applications for small-scale operations:

- Energy and environment
 - Sterilizing waste water, sludge, medical waste
 - Flue gas treatment
 - Remediation of contaminated soil
 - Asphalt treatments (durability)
- Medicine
 - Radioisotope production
- Security & defense
 - Cargo inspection
- Industry
 - Producing biofuel
 - Curing carbon fiber composites
- ... and many more!

Typical beam parameters

- Moderate Energy: 1 10 MeV
- High Current: ≥ 100 mA
- High Avg. Power: ≥ 1 MW
- → High average current & power can be better obtained with superconducting cavities
- → Continuous-wave (CW) operation enables higher throughput

U.S. DOE Report, "Accelerators for America's Future"
U.S. DOE Report, "Workshop on Energy and Environmental Applications of

But: Helium Requirements

Why hasn't this been done already?

Current helium infrastructure requirements for 2K Nb of a single cavity (Cornell SRF Lab example):

Helium system requirements for operating small-scale SRF accelerators are **not feasible**!

4K Cryocoolers Provide Sufficient Cooling for Nb₃Sn SRF

Nb₃Sn Cavity 4K Operation in Conduction Cooling

Challenge: Sufficient thermal link design, material choice, proper thermal contact

⇒ Ex: **1.5 W** heat load, **0.3 m** path length, target $\Delta T = 0.5 \text{ K}$

Material	k @ 4 K (W/(m*K))	Required cross- section (m ²)
316 SST	0.3	3
1100 Al	60	0.02
OFHC Cu	600	0.002

Proof of Principle Setup: Design

• Cavity: 2.6 GHz Nb₃Sn cavity Cryocooler: PT420-RM – 2.5W @ 4K

- Thermal link design:
 - High-purity copper clamps at beam tubes ⇒ Provides even cooling of cavity (critical for Nb₃Sn)
 - High-purity copper thermal straps ⇒ Provides flexibility and high thermal conductivity

Proof of Principle Setup: Assembly

N. Stilin et al., 2023 Eng. Res. Express 5 025078 (2023).

Proof of Principle Setup: Results (I)

- → Initial cooldowns were completely uncontrolled
 - → "Just press on" method
- → 20K/30K/40K cycles offer intermediate control
 - → Basic "off-on" method
- → Heaters offer best control
 - → Heaters located on copper clamps

N. Stilin et al., 2023 Eng. Res. Express 5 025078 (2023).

Proof of Principle Setup: Results (II)

- → Stable RF operation at 10 MV/m!
- → Best performance requires controlled cooldown
- → Cavity Q₀ is slightly reduced compared to helium bath test
 - → Likely due to higher ambient magnetic fields

N. Stilin et al., 2023 Eng. Res. Express 5 025078 (2023).

Proof of Principle Setup: Results (III)

→ Compare temperatures at 10 MV/m to simulation

N. Stilin et al., 2023 Eng. Res. Express 5 025078 (2023).

Cornell Conduction Cooled Cryomodule Prototype

Energy Gain	1 MeV	
Beam Current	>100 mA	
Average RF Power	>100 kW	

Conduction Cooling Thermal Design

Challenge: Effective conduction cooling

- 4 heat intercept rings
- High purity Al, Cu
- Thermal modeling (10 MV/m operation)
 - Cryocooler 2nd stage to cavity:
 ΔT ≤ 0.2 K
 - Temperatures across cavity: ΔT < 0.05 K

High-Power Conduction-Cooled RF Coupler

Challenge: High-power input coupler with low 4.2 K heat load

- 100 kW forward power with only ~ 1 W lost at 4.2 K
- Quarter-wave transformer to inner bellows optimizes RF behavior
- RF shield (inspired by Fermilab design) protects 4.2 K components from high RF fields
- Simulated heat loads for 100 kW:
 - Total of 38 W at 45 K
 - Total of 1.1 W at 4.2 K

Conduction-Cooled Cryomodule Design

Challenge: Minimize 4.2 K static heat load

- 316 SST tubes with 0.5 mm wall thickness
- Space-frame cavity support with G10 rods

Heat Loads (W)				
Source	1st Stage	2nd Stage		
Cavity + Beam Tubes	13.30	1.74		
Coupler*	29.50 / 37.90	0.80 / 1.11		
G10 Support Rods	0.34	0.02		
Thermal Radiation (est.)	5.00	0.10		
All Sources (incl. 2x coupler)	77.64 / 94.44	3.46 / 4.08		
Thermal Shield Model	76.40 / 93.20			
Cryocooler Limits	110	4.15		

^{*} Coupler heat loads are for $50\,\mathrm{kW}$ / $100\,\mathrm{kW}$ operation.

Outlook: RF Testing and Beam Operation

Next: SRF test of compact conduction cooled cryomodule

Soon: Installation in compact beam line for high-current testing

- High current gun (>20 mA average beam current, cw operation)
- 20kW RF/beam power

Efficiency / Cost Frontier:

Other Next-gen Materials

Zirconium Alloying/Doping of Niobium

Potential for T_c and superheating field above Nb limits

	Niobium	Nb-Zr
Predicted critical Temperature T _c	9.2 K	13 - 16 K
Predicted superheating field	220 mT	>300 mT ?

Thin Gold Caping Layer on Niobium

- Suppression of lossy surface oxide?
 - Of interest also for QIS
- Potential of optimized proximity-coupled surface layer to reduce total surface resistance?

Thomas Oseroff et al., 2023 Supercond. Sci. Technol. 36 115009 (2023). A Gurevich and T Kubo Phys. Rev. B 96 184515 and Phys. Rev. B 100 064522

Cornell Pulsed Power Sample Host Cavity

That's all for now. Stay Tuned!

