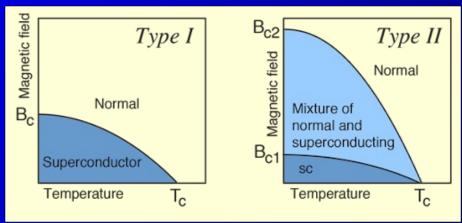

Thermal transmittance and Kapitza-resistance measurements of Nb₃Sn


After different treatments

Motivation: Why?

Better heat transmittance:

- Heat build up because of cavity inaccuracies
- Cavity needs $T < T_c$
- Heat goes through cavity into helium bath

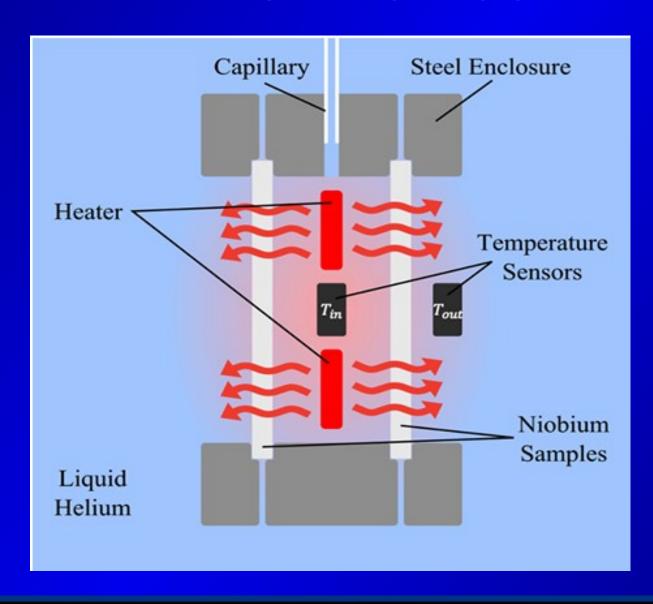


Image Source: http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/scbc.html https://byjus.com/physics/superconductor/

Source: Physik IV UNI Hamburg

NTCI-Device

Measurement s are taken below 2K

Thermal insulance

$$R_{ges} = \sum_{i,j} R_i + R_{i,j}$$
 $R_{i,j} = \frac{\Delta T_{i,j}}{q}$
 $R_i = \frac{d_i}{\lambda_i}$

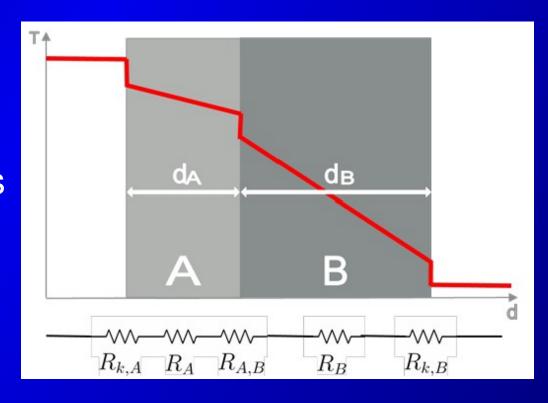
 R_{ges} is the total thermal transmittance resistance

 $R_{i,j}$ is the resistance between layers (interface resistance)

 R_i is the resistance for a material

 $\Delta T_{i,j}$ is the temperature difference between layers

q is heat flux


d is thickness

 λ is thermal transmittance

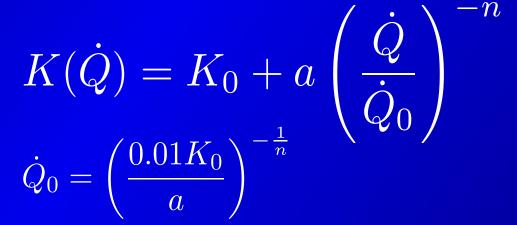
Thermal insulance

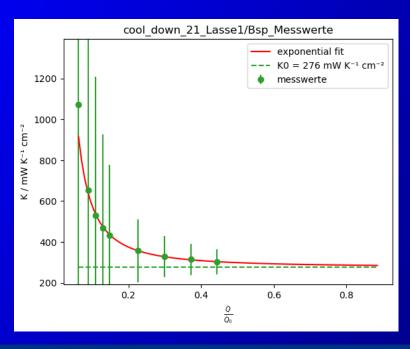
- Heat propagates through electrons and phonons
- Phonons can't easily couple between materials

$$R_{ges} = \sum_{i,j} R_i + R_{i,j}$$

Thermal transmittance

 $oldsymbol{K}$ is thermal transmittance


 $oldsymbol{K}_0$ is thermal transmittance without leaks


 $\mathbf{\dot{Q}_0}$ is norm const.

 $\dot{\mathbf{Q}}$ is heat flux

n, a are fit parameters

the plot with fit is only meant as a example

Thermal transmittance

 $oldsymbol{K}$ is thermal transmittance (total)

 $\dot{\mathbf{q}}$ is heat flux density

 $\lambda(T)$ is heat transmittance

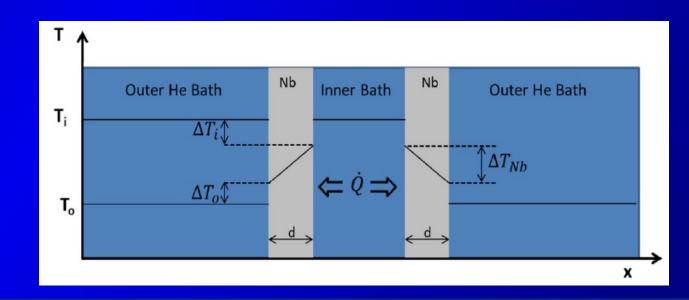
T is temperature

d is thickness

 R_k is interface resistance

R is resistance

I Is Current


U Is Voltage

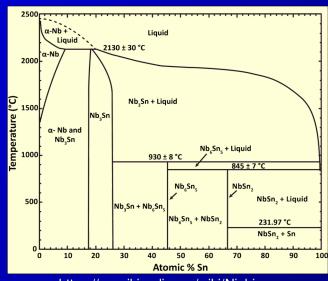
P Is Power

$$\vec{q} = \lambda(T) \cdot \vec{\nabla}T$$

$$K = \left(\frac{d}{\lambda} + R_k\right)^{-1} = \frac{1}{R}$$

$$I \cdot U = P = \dot{Q}$$

Nb₃Sn: Basics


- 3 Niobium per 1 tin
- $T_{c,Nb3Sn} = 18.3 K$

Problems:

- Exact mixing Not possible
 - \rightarrow Low B_c
- Complicated Phase diagram

Table 1. Material parameters of Nb and Nb₃Sn.

Property	Nb	Nb ₃ Sn
$T_{\rm c}$ [K]	9.25 [3]	18 [1]
$\kappa(0K)$	1.4 [3]	34 [1]
ξ_0 [nm]	39 [4]	5.7(0.6) [5]
$\lambda_{\rm L}$ [nm]	27(3) [6]	65[7]–89[8]
$\mu_0 H_{c1}(0K)$ [mT]	174 [3]	38 [1]
$\mu_0 H_c(0K)$ [mT]	199 [3]	520 [1]
$\mu_0 H_{\rm sh}(0{\rm K})$ [mT]	240 [2]	440 [2]

https://en.wikipedia.org/wiki/Niobium %E2%80%93tin

Coating

Nb₃Sn & CuBL:

- Good thermal conductivity
- Brittle
- Cu has low melting point
- Nb₃Sn (200nm), Nb (30μm)

(Not representative of our coating)

https://leadrp.net/de/blog/powder-coating-acommonly-used-surface-finish-processoverview/

Baseline

Buffered Chemical Polishing (BCP)

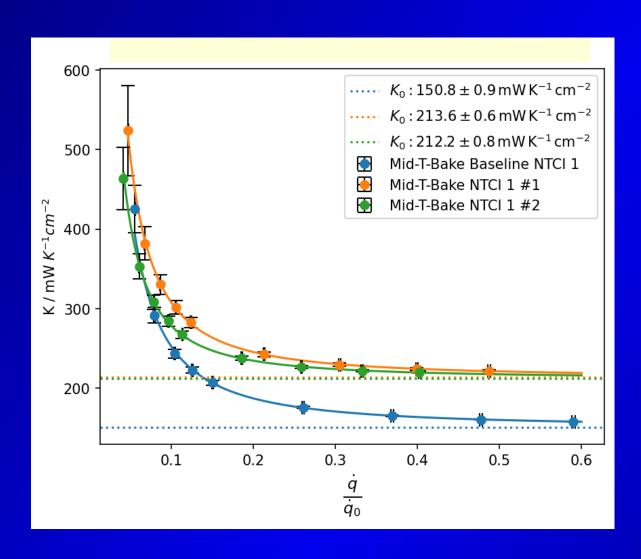
- 130μm removed
- Exothermal reaction cooled to ~10°C
- Hydrogen enters the material

Outgassing annealing

- 3h at 800°C
- 10⁻⁶ mbar

Mid-T

- Medium Temp. ca. 300°C
- 3h

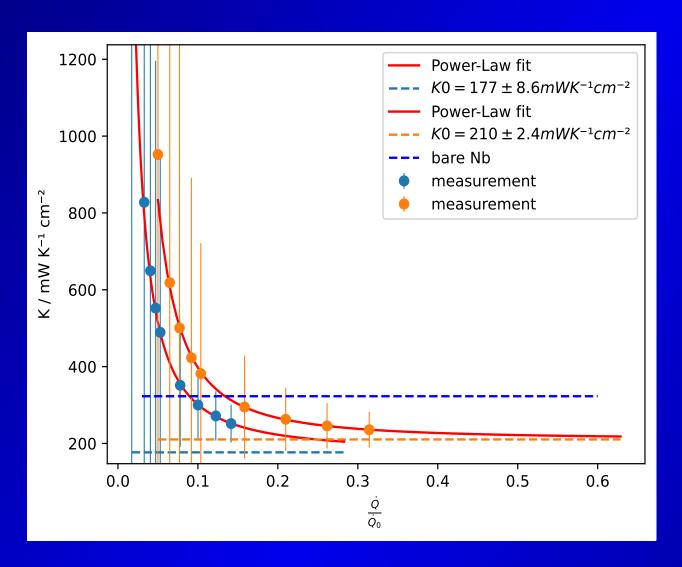

Effects:

- Oxygen diffuses into Nb
- Lower RRR value

https://www.kitchenaid.com/pinch-ofhelp/major-appliances/how-to-maximizeoven-space.html

K_0 for Sample pair 17

Before Mid-T:


(baseline)

- Thermal transmittance: $K_0 = 150.8 \pm 0.9 \, \frac{mW}{Kcm^2}$
- NTCI 1

After Mid-T:

- Thermal transmittance: $K_0 = 213.6 \pm 0.6 \frac{mW}{Kcm^2}$
- NTCI 1

K_0 for Sample pair 1

Before Mid-T:

Thermal transmittance:

$$K_0 = 210 \pm 8.6 \frac{mW}{Kcm^2}$$

• NTCI 1

After Mid-T:

Thermal transmittance:

$$K_0 = 177 \pm 2.4 \frac{mW}{K_{cm}}$$

• NTCI 2

K_0 for Sample pair 1

NTCl's:

- NTCl 2 > NTCl 1
- The difference in K_0 is bigger then it seems

BCP:

- There was a thermal runaway
- Big dents in the Nb
- Not comparable to other samples

After Mid-T:

Thermal transmittance:

$$K_0 = 177 \pm 8.6 \frac{mW}{Kcm^2}$$

NTCI 2

Before Mid-T:

Thermal transmittance:

$$K_0 = 210 \pm 2.4 \frac{mW}{Kcm^2}$$

NTCI 1

(baseline)

Comparing data:

Sample pair 1

Before Mid-T:

• Thermal transmittance:

$$K_0 = 210 \pm 2.4 \, rac{mW}{Kcm^2}$$

• NTCI 1

After Mid-T:

Thermal transmittance:

$$K_0 = 177 \pm 8.6 \, \frac{mW}{Kcm^2}$$

• NTCI 2

Sample pair 17

Before Mid-T:

Thermal transmittance:

$$K_0 = 150 \pm 0.9 \, \frac{mW}{Kcm^2}$$

• NTCI 1

After Mid-T:

• Thermal transmittance: $K_0 = 213 \pm 0.6 \; rac{mW}{Kcm^2}$

$$K_0 = 213 \pm 0.6 \, \frac{mW}{Kcm^2}$$

• NTCI 1

Reason for K_0 changes

Higher roughness:

Lower interface resistance

- $\lambda = \frac{h \cdot c_L(P)}{3.83k_B T}$
- 'trapped' phonons create new resonance at λ

Heat coefficient:
$$\lambda = \frac{RRR}{4}$$

(rule of thumb)

• Low RRR \rightarrow Low K_0

The rule of thumb might not always work

Future Measurements

NTCI 3 Commissioning

- Sample pair 1 with NTCI 1
- Nb₃Sn (1μm) on Cu w & w/o NbBL (30μm) (w. INFN)
- Nb₃Sn (200nm) on bulk Nb (w. TUDA)
- 2K, 1.8K and 1.5K Measurement for one sample pair

Helpfull Sources

- L. King Wärmeleitmessungen von beschichtetem und wärmebehandeltem Niob Bachelor Thesis University Hamburg 2024
- Wenskat et al. Thermal transmittance measurements of niobium at cryogenic temperatures, Physica C - submitted
- A. Lorf Einfluss von High- T_c -Beschichtungen auf die Wärmeleitfähigkeit von Niob Bachelor Thesis University Hamburg 2024
- Evidence for thermal boundary resistance effects on superconducting radiofrequency cavity performances

Extra

e impuritie scatt. e phonon scatt.

lattice phonon scatt.

lattice grain boundary

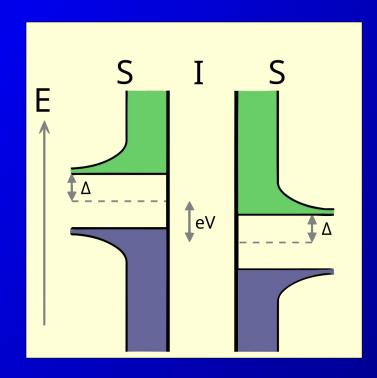
$$\lambda(T) = R(y) \left[\frac{\rho_{295K}}{L \cdot RRR \cdot T} + aT^2 \right]^{-1} + \left[\frac{1}{D(y)T^2} + \frac{1}{BI \cdot T^3} \right]$$

$$R(y) = \frac{2F_1(-y) + 2yln(1 + e^{-y}) + \frac{y^2}{1 + e^y}}{2F_1(0)}$$

$$\frac{1}{K} = \left(\frac{d}{\lambda} + R_n \right)$$

Different T measurements to guess the T dependence of λ (T)

Extra $dot Q_0$


$$K_{old}(\dot{Q}_0) = K_0 + a\left(\dot{Q}_0\right)^{-n} = 1.01K_0$$

$$\dot{Q}_0 = \left(\frac{0.01K_0}{a}\right)^{-\frac{1}{n}}$$

We have to make Q without unit because of Q^(-1/n)

SIS

- Superconductor Insulator Superconductor
- Each film is thinner then λ_L
- T_c is higher then niobium
- PEALD (Plasma Enhanced Atomic Layer Deposition)

https://en.wikipedia.org/wiki/ Superconducting_tunnel_junction

Title

aa