Workshop: "Early Science Community Proposal for Seeded FLASH" 2025-06-12 online

Rabi cycling of an electron pair: A coincidence experiment enabled by seeded FLASH

FELs can saturate bound quantum states (single-electron excitation)

Article

488 | Nature | Vol 608 | 18 August 2022

Observation of Rabi dynamics with a short-wavelength free-electron laser

htt	https://doi.org/10.1038/s41586-022-04948-y				
		and the second second			

Received: 15 January 2022	
Accepted: 8 June 2022	

Published online: 17 August 2022

Open access

Saikat Nandi¹^{CD}, Edvin Olofsson², Mattias Bertolino², Stefanos Carlström², Felipe Zapata², David Busto², Carlo Callegari³, Michele Di Fraia³, Per Eng-Johnsson², Raimund Feifel⁴, Guillaume Gallician⁵, Mathieu Gisselbrecht², Sylvain Maclot^{2,4}, Lana Neoričić², Jasper Peschel², Oksana Plekan³, Kevin C. Prince³, Richard J. Squibb⁴, Shiyang Zhong², Philipp V. Demekhin⁶, Michael Meyer⁷, Catalin Miron^{5,8}, Laura Badano³, Miltcho B. Danailov³, Luca Giannessi^{3,9}, Michele Manfredda³, Filippo Sottocorona^{3,10}, Marco Zangrando^{3,11} & Jan Marcus Dahlström²

Article

Strong-field quantum control in the extreme ultraviolet domain using pulse shaping

https://doi.org/10.1038/s41586-024-08209-y

Received: 23 February 2024 Accepted: 11 October 2024

Published online: 11 December 2024

Open access

Check for updates

Fabian Richter¹, Ulf Saalmann², Enrico Allaria³, Matthias Wollenhaupt⁴, Benedetto Ardini⁵, Alexander Brynes³, Carlo Callegari³, Giulio Cerullo⁵, Miltcho Danailov³, Alexander Demidovich³, Katrin Dulitz⁶, Raimund Feifel⁷, Michele Di Fraia^{3,8}, Sarang Dev Ganeshamandiram¹, Luca Giannessi^{3,9}, Nicolai Gölz¹, Sebastian Hartweg¹, Bernd von Issendorff¹, Tim Laarmann^{10,11}, Friedemann Landmesser¹, Yilin Li¹, Michele Manfredda³, Cristian Manzoni¹², Moritz Michelbach¹, Arne Morlok¹, Marcel Mudrich¹³, Aaron Ngai¹, Ivaylo Nikolov³, Nitish Pal³, Fabian Pannek¹⁴, Giuseppe Penco³, Oksana Plekan³, Kevin C. Prince³, Giuseppe Sansone¹, Alberto Simoncig³, Frank Stienkemeier¹, Richard James Squibb⁷, Peter Susnjar³, Mauro Trovo³, Daniel Uhl¹, Brendan Wouterlood¹, Marco Zangrando^{3,8} & Lukas Bruder¹¹²

Nature | Vol 636 | 12 December 2024 | 337

Strongly driven double excitation?

Collaboration:

Christian Ott et al. PRL 2019

C Ott, L Aufleger, T Ding, M Rebholz, A Magunia, M Hartmann, V Stooß, D Wachs, P Birk, G D Borisova, K Meyer, P Rupprecht, C da Costa Castanheira, R Moshammer, A R Attar, T Gaumnitz, Z H Loh, S Düsterer, R Treusch, J Ullrich, Y H Jiang, M Meyer, P Lambropoulos, T Pfeifer

Strongly driven double excitation?

Impact and Outlook

Seeding advantages for gas-phase science:

- Fundamental physics of few-body quantum dynamics
- prepare/control specific excited states
- Technical: conincidence detection requires high repetition rate

A brief sketch of an experimental (atomic-physics) program:

- observe Rabi cycling of 2 correlated electrons (this proposal)
- from there (later): combination with IR laser: ultrafast quantum control of few-/multi-electron systems
- if available (later): attosecond time delays of (doubly-) excited states
- mid-term: correlation/entanglement measurement&control

Impact and Outlook

Seeding advantages for gas-phase science:

- Fundamental physics of few-body quantum dynamics
- prepare/control specific excited states
- Technical: conincidence detection requires high repetition rate

A brief sketch of an experimental (atomic-physics) program:

- observe Rabi cycling of 2 correlated electrons (this proposal)
- from there (later): combination with IR laser: ultrafast quantum control of few-/multi-electron systems
- if available (later): attosecond time delays of (doubly-) excited states
- mid-term: correlation/entanglement measurement&control
- mentioned by Tim Laarmann during discussion in meeting on 12 June 2025: also study chirped-pulse effects