International Lattice Data Grid

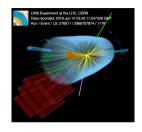
DMA ST1 Meeting

Hubert Simma DESY

May 26, 2025

QCD on the Lattice

Quantum Chromodynamics (QCD)


Computation of hadronic observables, Q, (masses, formfactors, ...) from first principles and beyond perturbation theory: "path integral"

where

$$\langle Q \rangle = \int_{\mathcal{C}} e^{-S(\mathcal{C})} \cdot Q(\mathcal{C})$$

C = gluon (quark) field configuration at each point in 4d space-time

S =classical action (\leftrightarrow field equations)

Lattice QCD

- discretization: fields defined only on a finite lattice e.g. $V \sim 50^3 \times 200 = 25$ million sites
- integration in $O(10) \times V$ dimensions: importance sampling of field configurations C_i with weight $e^{-S(C_i)}$ by a Markov Chain Monte-Carlo (MCMC) simulation

$$\langle Q \rangle \sim \sum_{i=1}^{N} e^{-S(C_i) \cdot Q(C_i)}$$

Lattice QCD: Simulation Workflow and Data

```
Simulation
HPC / performance

"Measurement"
HPC / throughput

Analysis
```

```
"Raw" data = samples ("ensembles") of gluon (gauge field) "configurations" \{C_i\}
```

- low "event rate": 1 config / 30'000 core hours \rightarrow massive parallelization
- ullet large volume: 1 ... 100 GB imes 1000 ... 10000 configs o O(PB)
- expensive to generate: 1 ... 100 million core hours / ensemble
- re-usable in multiple projects / collaborations for different "measurements"

International Lattice Data Grid (ILDG)

Community effort to share expensive primary data:

- proposed at Lattice conference 2002
- community-wide agreed metadata schema 2004
- first services operational ≈ 2007

Organization:

- federation of autonomous "Regional Grids"
- forming a single Virtual Organization (VO)
- 2 Working Groups (metadata and middleware) + Board

Basic Concepts:

- ILDG defines standardized metadata schema, file-format, API
- Regional grids (with specific policies, technologies, resources, ...) provide catalogue services + storage
 - E.g. LDG in Europe makes to a large extent also use of WLCG technology and services

[hpc.desy.de/ildg]

Towards ILDG 2.0

Situation around 2020

- Usability of ILDG services had severely degraded
- ✗ ILDG had started 10 years before formulation of FAIR principles

Aims for ILDG 2.0

- → Become fully FAIR-compliant
- → Re-activate and organize regional grids
- → Modernize concepts and basic gearbox
- → Explore support for non-lattice use-cases

Critically relied on PUNCH4NFDI funding for 2y of a professional SW developer

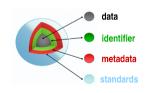
FAIR principles for scientific data management and stewardship

Findable

Accessible

Interoperable

Reusable


- required by funding agencies
- ☐ 15 concise principles formulated in Wilkinson 2016
 - globally and unique persistent identifiers (F1)
 - rich metadata (F2)
 - metadata is registered and can be searched and harvested (F4)
 - authentication/authorization procedure where necessary (A1.2)
 - metadata accessible even when data is no longer available (A2)
 - ...

41 detailed indicators in FAIR Data Maturity Model

☐ guiding principles (not implementation)

EU Commission 2016

FAIR data: a local implementation

Logical organization as a database:

each FAIR data object becomes entry (row) in a database (table) with 3 fields (columns)

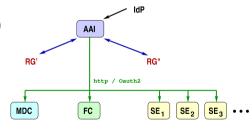
 \longrightarrow ID metadata data

- → retrievable by ID (A1) and searchable by metadata (F4)
- mint persistent identifiers (ID)
- define appropriate metadata schema and storage format
- possibly implemented just through a local POSIX file system
 - i.e. buy a big disk and use standard tools: ls, grep, find, $|\operatorname{Q}|$, . . .
- additional access control mechanisms are required for "sharing" of data

N.B.: Technically, ILDG could be implemented by a single central infrastructure

FAIR data: a distributed implementation

For large data objects or volumes: need to split (physical) storage of metadata and data



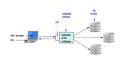
ID data

→ distributed implementation: typically by distinct web services (not pages):

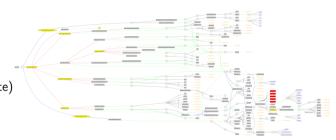
- Authentication and Authorization (AAI)
- Metadata Catalogue (MDC)
- File Catalogue (FC)
- Storage Elements (SE)

where

- separate MDC and SE becomes mandatory for large data objects (cost of search)
- multiple SE may become mandatory in practice (replication, funding, ownership)
- FC becomes mandatory if there are multiple SE or varying storage locations (SURL)


Status of ILDG 2.0

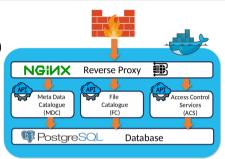
- ✓ Revision of ILDG specifications for metadata schema, file format, and API of catalogue services [arXiv:2502.09253]
- ✔ Re-factored catalogue services
 - ullet Metadata Catalogue: ID \longleftrightarrow metadata
 - ullet File Catalogue: SURL \longrightarrow ID (LFN)
 - Access Control Service: user ←→ (meta-)data
- ✓ New user registration and VO management by Indigo IAM
- ✓ Complete transition to tokens (replacing X.509 grid certificates)
 - → enable fine-grained access control to metadata and data
- ✔ Prototypes for optional add-on services/interfaces
 - → assemble flexible and modular distributed RDM systems

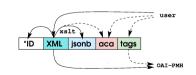

ILDG Metadata Schema

- ☐ Rich and community-agreed schemata for descriptive (scientific) metadata
 - physics
 - algorithm
 - provenance
 - data management

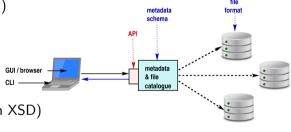
(pprox 350 elements, vs. < 100 of DataCite)

- W3 standard
- rigorous grammar (XSD) for creation and validation of metadata
- powerful and complex query technologies (Xpath, Xquery)
- many tools and libraries for processing XML documents




Re-factored Metadata Services

- Simple containerized deployment (currently at Bielefeld, DESY, Jülich, Plymouth, Tsukuba)
- ☐ Metadata Catalogue:
 - multiple metadata collections, each with freely configurable schema (XSD)
 - Xpath and "quick-search" queries


- ☐ File Catalogue:
 - efficient reverse look-up of Storage URL ightarrow ID (data may be moved or replicated)
- Access Control Service

Interoperable ILDG Services and add-on Interfaces

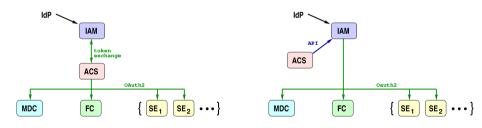
- ☐ Each regional grid autonomously implements and operates basic ILDG services
- ☐ Interoperable by ILDG-wide standards (metadata schema, file format, REST API)
- Optional add-on services and interfaces
 - file transfer service (FTS)
 - metadata harvesting (OAI-PMH)
 - fine-grained access control
 - markup and query GUI (parametric in XSD)
 - . . .

(see e.g. MDC index)

Identity and Access Management (IAM)

ILDG Middleware Working Group tested and evaluated different solutions (incl. Unity AAI)

- → Dedicated Indigo IAM instance at INFN-CNAF
 - user and group management
 - enforce VO-specific policies and LoA
 - registered as eduGAIN Service Provider
 - OIDC provider and OAuth2 token issuer
 - flexible OAuth2 client registration
 - flexible scope configurations (+ policy engine)


Administrative and technical advantage of a dedicated (community-specific) instance:

IAM as a Service!

Access Control Service (ACS)

- ☐ 3rd "catalogue" for administrative metadata
 - hierarchical delegation (admin \rightarrow project \rightarrow groups/users)
 - optional group management (GDPR concerns!)
- ACS in front of IAM

or beside/behind of IAM

Setup of ILDG seems in certain aspects ahead of (or interesting for) other experiments

Attribute-Based Access Control (ABAC Model)

- \square Policy **enforcement** points \rightarrow **distributed** Resource Servers (RS = MDC, FC, SE)
- \square Policy **decision** point \rightarrow **central** Access Control Service (ACS)
- ☐ Break-up the huge user-data relation into smaller many-to-many relations

☐ Path matching [WLCG Common JWT Profiles 1.0]

SURL = https://dcache.somewhere.net:2880/a/b/c/d

OAuth2 token:

scope (capability)	access
storage.read:/	permit
storage.read:/c	permit
storage.read:/c/d	permit
storage.read:/x	deny
storage.read:/c/y	deny

Outlook

CTA

☐ Fix loose ends and minor issues (slowed down without SW developer, now working at CTAO) ☐ Start of massive uploads (\approx 8 PB by 14 collaborations, see Lattice2024) User tools and training (clients, documentation, GUI, hands-on workshop) ☐ Setup of data publishing process (e.g. with DOI minting via Zenodo or PUBDB) ☐ Synergies within and beyond PUNCH4NDFI to exploit and maintain ILDG-like setup • Storage4PUNCH, Compute4PUNCH, InterTwin • Radio astronomy (GLOW)