Silicon detectors for MeV gamma-ray astronomy

Markus Ackermann, Merlin Barschke, David Berge

(with support from Simon, Ingrid,)

Discussion on silicon detector projects DESY
June 12, 2025

Gamma-ray astronomy

in the MeV energy band

- The MeV (100 keV 100 MeV) energy band is not covered with comparable sensitivity as the keV, GeV and TeV bands
- Broad range of multi-wavelength / multi-messenger science topics
- Excellent match for DESY AP focus on gamma-ray and multi-messenger astronomy
- Excellent match for DESY's strength in developing and building large-scale silicon detectors

Non-thermal continuum radiation

Needs instrumentation outside of Earth atmosphere

MeV gamma-ray detection

Compton and pair creation regimes

- Common approach: Si-Tracker + Calorimeter
- Advantage: suitable for Compton and pair creation regimes
 → 100 keV few GeV energy coverage
- newASTROGAM proposal:
 - 2700 double-sided Si-strip detectors (75 layers, 36 DSSD per layer)
 - 9.5cm x 9.5cm detector area
 - 240µm/480µm strip pitch
 - 500µm thickness
 - 359,424 channels
 - ~350 W power budget

newASTROGAM

... a timeline (if newASTROGAM is selected in ESA M8 call)

- Lead proposers: Germany, Italy and France (plus contributions from DK, IE, PL, PT, ES, SE, and CH)
- DESY focus will be on SI-tracker
- Very positive reception by scientific council (plan to go through DESY CD0 phase)
- R&D (Phase 0/A) and construction efforts are funded by DLR (after selection by ESA)

Timeline	Event	Notes	
April 2026	Proposals due		
Q4 2026	Start of Study Phase 0	Up to 5 candidates	
Q4 2027	Selection of Phase A candidates	Selection of up to 3 candidates	
2026 - 2030	Phase 0/A study	Develop final instrument design, few FTE effort	
Q2 2030	Mission selection	Selection of mission to be launched	
2030 - 2032	Phase B1	Ramp-up to production	
Q4 2032	Mission adoption	Full construction efforts after this date	
2032 - 2041	Payload integration & testing	Production / integration / testing of "flight model"	
>= 2041	Launch		

Silicon detector R&D

newASTROGAM phase 0/A or mission independent

- Current baseline technology is DSSD for Si-Tracker
 - For Compton regime xy-resolution in single detector mandatory
 - Strict power budgets for space missions favor lower channel count of strip detectors
 - But: challenging to manufacture & integrate (3x3 interconnected strip detector arrays)
 - ... in particular for the large number (25 m²) of detectors needed
- Low-power CMOS pixel detectors are an emerging alternative
 - AstroPix developed by KIT (Group of I. Peric)
 - Currently investigated as tracker option for MeV gamma-ray telescope AMEGO-X (NASA proposal)
 - Current generation: AstroPix4
 - Mentioned as alternative to baseline DSSD-based tracker in newASTROGAM proposal

Requirements on pixel detectors

for space-based astronomy

• Core requirements:

Power consumption

Pixel pitch

Thickness

Dynamic range

Energy resolution

 $<1.5 \text{ mW/cm}^2$

 $500 \times 500 \ \mu m^2$

500 μm

25 keV-700 keV

<10% (FWHM) at 60 keV

AstroPix3 performance

- Energy resolution: close to 10% goal
- Dynamic range: up to 200 keV (700 keV goal)
- **Depletion depth:** relatively low (on tested 300 Ω cm substrate)
- Power consumption: 4.1 mW/cm² (~ factor 3 higher than required)
- Several successful tests of radiation hardness

Fig. 12. Energy spectra obtained from a single pixel of AstroPix3.

Yusuke et al., NIMA, 2024

AstroPix

Current status and expectations

- AstroPix_v4 (1x1cm) produced and undergoing testing, AstroPix_v5 (2x2cm) in development:
 - Re-designed digital part: 3mW/cm² → 0.7mW/cm² (+ 1 mW/cm² for analog part)
 - Increased energy range to 700 keV
 - Full depletion expected on substrates with > 10 k Ω cm2 resistivity
- NASA plans to test three AstroPix3 quad modules on a sounding rocket

AstroPix3 power consumption (4 cm²)

	Analog		Digital
	VDDA	VSSA	VDDD
Nom. Voltage	1.80 V	1.20 V	1.80 V
Current	$1.47\mathrm{mA}$	$1.33\mathrm{mA}$	6.88 mA
Power	2.65 mW	1.60 mW	12.24 mW

Striebig et al., Jlnst, 2024

Steinhebel et al., arXiv:2501.11698

AstroPix3 quad module

Plans for future Si detector activities in AP

R&D (independent of outcome of ESA call):

- Investigate the potential of AstroPix for newASTROGAM / future ESA gamma-ray mission
- Continued development of AstroPix with KIT as partner
- Detector integration / assembly / front-end electronics towards potential flight tests

In case of a successful newASTROGAM proposal:

- Take a lead role in tracker development and construction
- Phase0/A: evaluate AstroPix as an alternative for DSSD baseline design, prototype tracker modules and front-end electronics (DSSD / AstroPix)
- Mission adoption: newASTROGAM tracker construction / integration / testing (Germany/Italy)