



# Neutrons 5/23

### A final attempt at decent resolution for EU24 neutrons

- Recall: abysmal energy resolution for neutrons with and without BIB after upgrade to EU24 lattice
- Individual energy bins not Gaussian-distributed, resolution data points meaningless
- Kiley's event display revealed a total cluster fragmentation disaster for the with-BIB sample
- Attempted a time-aware reclustering algorithm which helped but did not fix the problem
- This week: modified the **truth-assisted** cone-clustering we performed for photons with BIB, adding a **time-awareness condition**, and assessed resolution only for neutrons I consider **well-matched**

## Truth-assisted, time-aware clustering

- Sum energy of HCAL hits which pass two conditions...
  - Within a cone of dR<0.1 from the truth neutron
  - Within a time window of [-0.5, 2] ns
- Time window was chosen based on these studies:



## Very stringent matching criteria

- For no-BIB, required reco neutron to be:
  - Neutron-identified (pdgid = 2112)
  - Maximum pT PFO in the event
  - Within dR=0.1 of the truth neutron
  - E<sub>reco</sub> is no less than 60% of E<sub>true</sub>
- For truth-assisted BIB reco, required:
  - E<sub>reco</sub> is no less than 60% of E<sub>true</sub>
- This energy cut is somewhat arbitrary, but motivated by bimodality in the resolution studies...

## Bimodality

- Without the energy requirements, individual binned histograms of (E<sub>reco</sub>-E<sub>true</sub>)/E<sub>true</sub> are bimodal across endcap, barrel, and transition region
  - Taller peak has mean closer to zero, indicating it corresponds to correctly-matched neutrons
  - Smaller peak has mean less than -0.5 (mismatched neutron)
- The split between peaks looks to be roughly at deltaE/E~-0.4, which corresponds to a cut on response of 0.6
- Want to assess the resolution of only **properly matched** neutrons, since we want to show the resolution capabilities of our detector given the assumption that we figure out how to properly match and reconstruct our neutrals







## Resolution with these constraints

- First, note y-axis: **best** resolution for neutrons we've seen yet
- Truth-assisted sits nicely on top of no-BIB
- Bad features at the crossover between<sup>2</sup>
  the 50-250GeV and 250-1000GeV
  slices
  - I attribute it in part to the huge drop in statistics per bin between these two slices
    - Note significantly larger y-errors



# Matching Efficiency: where we pay for the better resolution

- Of course, the stringent requirements on a "well-matched" PFO damage matching efficiency significantly
- However, to the point Simone made at IMCC, we can be more clear about reconstruction efficiency vs matching efficiency
  - i.e. we almost always **find** a neutron-identified PFO (reconstruction efficiency  $\rightarrow$  1)
  - But we know these PFOs are not always well-matched/accurately reconstructed, and this is reflected in our poor matching efficiency
  - Don't have the plots now but can generate if this is something we want to report

## Pros/Cons of this approach

| Pros                                                                                                                                                             | Cons                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| We achieve good resolution for matched neutrons                                                                                                                  | Matching efficiency is horrible                                                                                                                  |
| As long as we are transparent about the procedure,<br>we are not presenting anything misleading or<br>meaningless (i.e. all individual fits are now<br>Gaussian) | Procedure might seem over-engineered; lots of in-<br>between steps, truth-assistance, and data<br>selection, which also causes our stats to drop |
| We demonstrate that reconstruction/matching<br>troubles (software problems) are <b>separable</b> from<br>detector performance; not fundamentally limited         | Still not a very compelling result for our progress with neutral reconstruction                                                                  |

### Let me know what you think!

### Backup: Individual Gaussians (no BIB, response-calibrated





#### Backup: Individual Gaussians (BIB, response-calibrated, truth-assisted)

-0.4 -0.2 0.2 0.4