Detector R&D in FH

Katja Krüger, Moritz Guthoff

DESY Detector Retreat 16.06.2025

HELMHOLTZ

Detector activities in FH

• Detector activities are formally part of MT-DTS and MU-FPF.

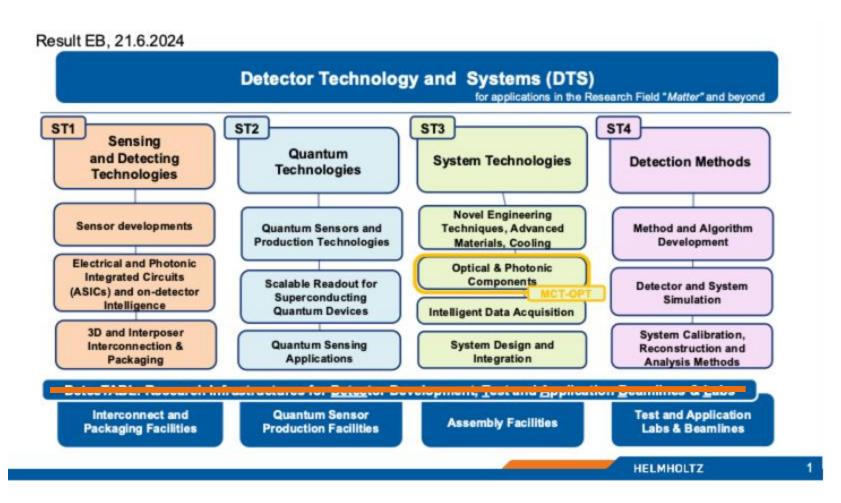
MT-DTS: Detector R&D

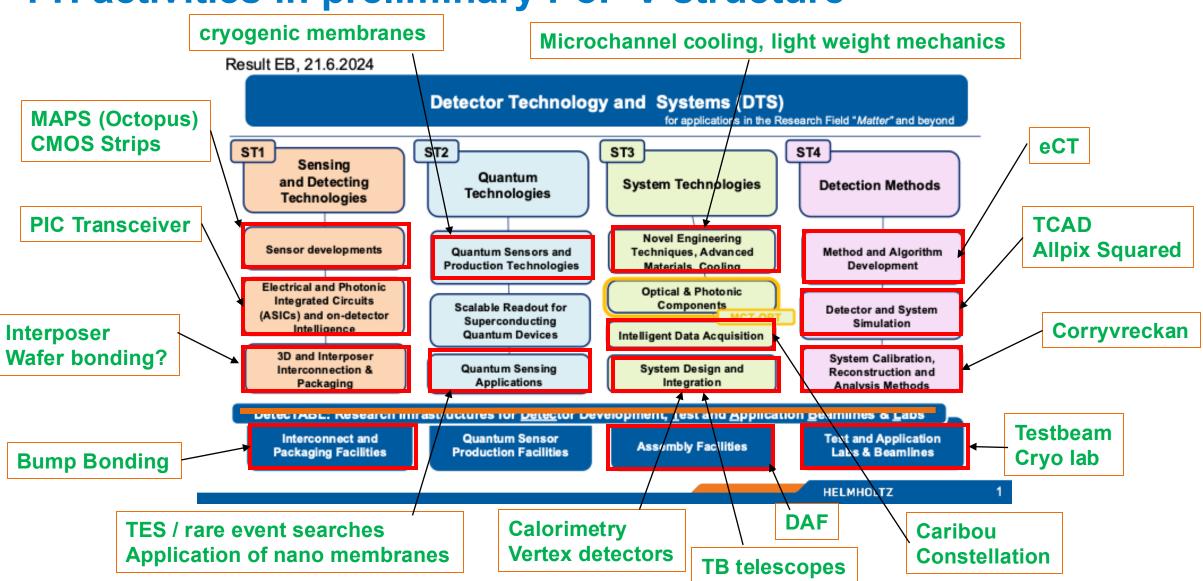
- Silicon detector R&D: CMOS based Pixel and Strips
- Silicon photonic transceiver (InnoPool SoPhie)
- Calorimeter developments
- Advanced cooling techniques

- MU-FPF: Detector construction for experiments
 - ATLAS and CMS Phase-2 upgrade
 - Belle-II PXD2 (completed)
 - TES for ALPS

.

Transition from R&D to prototyping and construction involves transition of research programme.


R&D goals in MT-DTS should be aligned with plans in MU-FPF.


Strategic overview for MT-DTS

- Next generation trackers and calorimeters are required to provide high resolution, additional measurements such as timing and energy, while consuming little power at reduced non-detection related mass.
 - High resolution in space and time lead to high data volumes and power consumption.
- Maximising **data processing on the detector** is paramount to achieve performance targets and to keep the needed data transfer under control.
- Strategy:
 - High level of integration allows for scalability while keeping system complexity under control
 - High bandwidth data transfer at low power consumption
- Key technologies to address these challenges
 - CMOS based sensors
 - Photonic transceivers
 - Advanced interconnects and wafer bonding
 - Advanced cooling techniques

Preliminary MT-DTS PoF V structure

Exact shaping what belongs to which pillar is still ongoing for ST3 and ST4

FH activities in preliminary PoF V structure

ECFA DRD involvements

DRD3 (Semiconductor Sensors)

• MAPS development (WG1), Allpix Squared (WG4) and Caribou DAQ development (WG5)

• DRD5 (Quantum sensors)

- Transition edge sensors (WP3b)
- Optomechanical membranes (WP4c)
- DRD6 (Calorimeters)
 - Main interest: Development of a CALICE-style calorimeter for a circular collider.
- DRD7 (ASICs):
 - Main interest in development of silicon photonic transceivers (Project 7.1a).
- DRD8 (Tracker mechanics):
 - Contribution to the material properties database.
 - Cooling technologies and microchannel cooling.

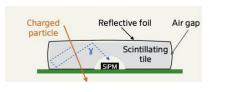
Silicon Detector R&D

Next FH talk by Simon will cover:

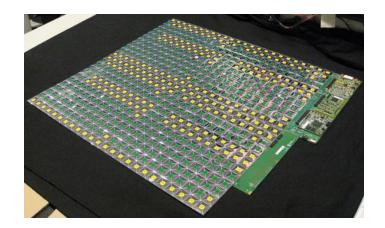
- CMOS sensor R&D
- Silicon Photonics
- Software tools

Silicon detector contributions to Experiments

- Long term vision of Higgs Factory detector shares detector requirements with many intermediate projects
- MAPS developments (Octopus) suitable for LUXE Tracker at higher intensities.
- Belle-2 Tracking detector upgrade.
 - Strong interest to participate if approved.
- Smaller German experiments as part of the new excellence clusters.
 - Insight, Lohengrin, P2 Spectrometer
- MightyPix (based on TelePix2) detectors: LHCb, KOTO-II
 - Large systems expertise
- AstroPix for AP satellite experiment (Astrogam)
 - Same technology as CMOS Strips
- Plans and strategy to be aligned with MU-FPF


Calorimeter R&D

Highly granular SiPM-on-Tile hadron calorimeter


- Small (a few cm²) scintillator tiles individually read out by SiPMs
- Developed at DESY to reach jet energy resolution at a future e+e-Higgs factory
 - Several generations of prototypes built and tested 2006 2022
 - Electronics optimized for ILC bunch structure (power pulsing)
- Application in CMS HGCAL endcap calorimeter upgrade for HL-LHC
 - New challenges: radiation hardness, data rates, operation at -30 degree
 - Less stringent requirements on energy resolution
 - Production of tile modules expected 2025 2026
- Adaptations and R&D needed for a circular collider
 - Expected data rates between ILC and HL-LHC
 - Need to evaluate need for active cooling
 - For Z-pole running: evaluate / re-optimize detector geometry
 - Activity within DRD6
- Technology also applicable for other detectors (DUNE, ...)

Other calorimeter technologies under consideration at DESY

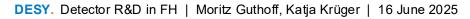
- MAPS ECAL
- Chromatic calorimetry with quantum dots

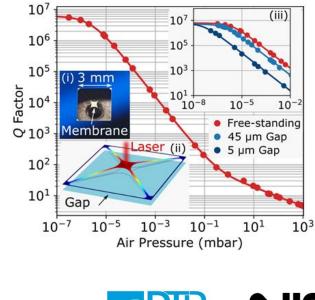
close collaboration with Uni Hamburg

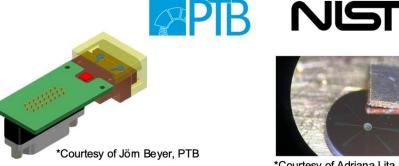
SiPM-on-Tile technology in HGCAL

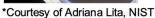
Capitalise on our expertise from AHCAL:

- Board level design for SiPM-on-tile readout boards ("Tileboards")
 - Test & characterization of Tilemodules in beam tests and climate chamber
 - Tests with irradiated SiPMs
- Development of production and test procedures
 - Reflector foil handling, tile wrapping, module assembly
 - Setup of QC stations & protocols
- Assembly of ~half of all Tilemodules in cooperation with other groups

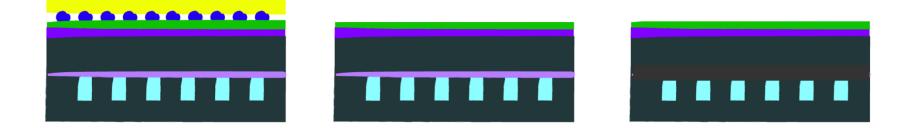



Quantum technologies


- Currently exploring possibilities of Quantum sensing ٠
 - InnoPool QS4Physics •
 - Active member of DRD5
 - Infrastructure for Quantum R&D in Hamburg and in Zeuthen. ٠
 - Part of ERC grant DarkQuantum


Quantum Sensor and Production Technologies ٠

- **Cryogenic Membranes**
 - Gas pressure sensor UHV to ambient with gas identification •
 - High frequency GW detection. ٠
- **Quantum Sensing Applications** ٠
 - Rare particle searches using Transition Edge Sensor systems.
 - Reaching DM detection limits through ultra low noise •
 - Atomic clock-based experiment to search for Ultra-Light Dark ٠ Matter



ectron beam e ion trap (EBIT)

Cooling technologies

- Intelligent systems consume power and produce heat.
 - On detector intelligence must be balanced against cooling performance.
- Cooling systems under development are scCO₂ for warm operation or Krypton for cool operation.
 - No FH involvement yet, but long term interest.
- Highly integrated microchannels are a key technology for detector cooling.
 - Active study of samples together with FD-DS
 - Interest to further develop Silicon microchannel to sensor integration.

Infrastructure for Detector R&D

- **Test beam:** Essential work horse for detector development in particle and nuclear physics. National and international.
 - Currently available test beams: 1-6 GeV electrons. 3 beam lines
 - With PETRA IV, a new test beam facility is needed, concepts are being developed
 - New beam telescopes: synergy with detector technology development
- Detector Assembly facility (DAF)
 - Currently fully in use for LHC upgrades (expected until 2027)
 - Large clean rooms with equipment for detector assembly, testing, mechanical integration, cooling tests, metrology etc.
 - Formally belongs to MU-FPF

