ASTROPARTICLE PHYSICS DETECTORS.

Current projects and plans

Timo Karg

DESY Detector Retreat, 16 June 2025

RNO-G Radio Neutrino Observatory - Greenland

ICECUBE GEN2

CTAO – Cherenkov Telescope Array Observatory

Observatory with two sites with instrumentation (Alpha Configuration)

- North array (La Palma): 9 MST, 4 LST
- South array (Paranal): 37 SST, 14 MST

CTAO is our flagship project

We are involved on all levels and spearhead many activities

- Co-host of CTAO with the SDMC
- Council member
- Key member of the user consortium
- Largest individual In-Kind provider
- Lead Medium-Sized Telescopes and computing contributions We have a lead role in the strong German community

Medium-Sized Telescopes (MSTs)

Achievements 2021-2024

- Formed coherent collaboration led by DESY, ٠ agreed on construction plan (2 sites, 23 MSTs)
- Critical Design Review telescope structure passed ٠
- Logistics plan with pre-assembly in Zeuthen exists ٠
- Procurement MST pathfinders kicked off ٠
- On-site assembly of 3 MST pathfinders by 2026 ٠

We coordinate the MST collaboration of In-Kind Contributors

ULTRASAT

- First scientific satellite mission led by Israel
- Unprecedentedly large field of view (204 deg²)
- First wide-field survey of transient UV sources
- Kick-off in 2019, launch planned for \geq 2027

ULTRASAT at **DESY**

Achievements 2021-2024

- First DESY satellite mission
- Unique multimessenger science synergies, contribution to space project as part of our strategy
- We started the camera project in 2019 and plan to deliver it by 2026
- New CMOS sensor design verified and being tested
- Electronics, mechanics, thermal system fully developed and being tested at DESY
- New infrastructure (clean room, thermal vacuum chamber) constructed and commissioned for tests
- First radiation campaigns performed

* companies we work with

ULTRASAT camera assembly, characterisation, testing

Optical calibration setup at DESY has unique precision capacities, also used by NASA and NIST!

Dedicated cleanroom built and commissioned, integration tests ongoing

Where do we want to go in neutrino astronomy?

Our strategy

AP Detectors

IceCube Upgrade

Towards the low energies with the mDOM

To be installed in the 2025/26 field season

The mDOM, a German design:

- 24 small PMTs instead of one large one
- Enhances photocathode area by factor 2.5 and multi-facetted approach allows for better reconstruction

IceCube Upgrade

Producing the mDOM

- DESY one of two production centers for the lceCube Upgrade mDOM
- Production line as developed at DESY has been exported to second production line in the US
- 225 of 430 novel optical modules have been produced and tested at DESY

L2 Manager Sensor production coordinator of German contribution

 On-time delivery of the first two strings to South Pole for installation in 2025/26

Readout electronics installed

IceCube Upgrade

This winter at South Pole

Drill refurbished

Cabling for the seven strings ready

DOMs and calibration devices arrived

Radio Neutrino Observatory Greenland

Towards the ultra-high energies with RNO-G

- Improve the sensitivity of IceCube at the highest energies by exploiting the radio emission following a neutrino interaction
- First large-scale implementation of the radio technique to detect neutrinos (Askaryan effect, coherent Cherenkov-like emission)
- Under construction in Greenland since 2021
- Leadership: US (Chicago, Penn State), Brussels and DESY

16 June 2025

AP Detectors

DESY Hardware expertise for RNO-G

and R&D for IceCube-Gen2

- DAQ component construction and testing
- Drilling and installation support
 - World's largest mechanical ice drill
- Engineering for renewable energy system of wind-turbines and solar power
- Fuel efficient installation tools with small German company

Power system

16 June 2025

AP Detectors

IceCube-Gen2

Our path ahead

Experiments in harsh (polar, desert) environments

- Low power readout, autonomously powered detector stations (wind, solar)
- (Sub-)nanosecond clock distribution over 10s of kilometers

СТА

• R&D for compact, low-power SiPM replacement of current photomultipliers

ULTRASAT plan to develop space-based detectors for MeV gammas

• e.g. double-sided silicon strips \rightarrow Steve's presentation

IceCube, **RNO-G** prepare for IceCube Gen2 and/or the next big thing (beyond KM3Net)

• Need to update the DAQ (1) reduce the power consumption (2) allow for triggering, AI, reconfigurability, etc (FPGA)