

https://www.desy.de/

Semiconductor Detector R&D

A Vision for Vertexing & Tracking at Future Colliders

Simon Spannagel, DESY

DESY Detector Retreat 16 June 2025

Many Detector Prototypes, Concepts & Tools

Next-gen High-precision **Tracking Detectors TANGERINE & OCTOPUS**

Semiconductor **MC** simulations Allpix Squared

Control & DAQ Track Reco at for Small Setups Test Beams Constellation Corryvreckan

High-Bandwidth Data Transmission SOPHIE

S^oPhi€

Pixels w/ Picosecond Flexible region-ofinterest trigger **Time Resolution** TelePix2 HV-MAPS Monolithic Digital SiPM

Enhancing Collaboration Resolution with **DESY-AP FIAD** AstroPix

Flexible DAQ for Protoypes Caribou

S. Spannagel - Semiconductor Detector R&D - DESY Detector Retreat

Vertex Detector Requirements at Lepton Colliders

- Precision measurements very demanding on vertex detectors
 - high resolution, min. scattering, small radii Impact parameter resolution:
 - Time resolution :
 - Heat dissipation:

fast sensor response, large S/N

low power consumption

	Lepton Colliders		(HL-) LHC (ATLAS/CMS)
Material budget	< 1% X ₀		10% X ₀
Single-point resolution	≤ 3 µm		~ 15µm
Time resolution	~ ns		25ns
Granularity	≤ 25 μm x 25 μm		50µm x 50µm
Radiation tolerance	< 10 ¹¹ n _{eq} / cm ²		O(10 ¹⁶ n _{eq} / cm ²)
Duty cycle	< 0.01 ‰ @ ~ms (linear)	100 % @ ~ns (circular)	100 % @ 25ns

Tangerine

Towards next generation silicon detectors A Helmholtz Innovation Pool Project

S. Spannagel - Semiconductor Detector R&D - DESY Detector Retreat

The Tangerine Project

Towards the Next Generation of Silicon Detectors

Developments of Monolithic Active Pixel Sensors (MAPS) should achieve very high spatial resolution and very low mass [...] To achieve low mass in vertex and tracking detectors, thin and large area sensors will be crucial.

ECFA Detector R&D Roadmap, Research Goal DRDT 3.1

-204

ECFA DRD Roadmap, 2020

/ertex letector ²⁾	DRDT	2035- 2040 20	040
Position precision	3.1,3.4		
₋ow X/X _o	3.1,3.4	Ŏ	
ow power	3.1,3.4	Ŏ	
ligh rates	3.1,3.4	Ŏ	
arge area wafers ³⁾	3.1,3.4		
Jltrafast timing ⁴⁾	3.2		
Radiation tolerance NIEL	3.3		
Radiation tolerance TID	3.3		

- Explore MAPS technologies as candidates for vertex detector sensors at future lepton colliders
- Develop **simulation approach for MAPS** to allow predictive studies on sensor layouts
- **Design & characterize prototypes** with fast frontends and full digital integration

submissions supported by

Technology: 65nm CMOS Imaging Process

- International collaboration for common submissions to foundry, organized through CERN EP R&D programme
 - Strongly driven by ALICE ITS3 collaboration
 - First application in HEP
 - Two submissions received back & tested

- Goal: explore new technology in terms of
 - Performance: efficiency, ...
 - Scalability: wafer-scale sensors, stitching
 - Timing: sensor layout optimization

Investigated Chips within Tangerine

V1 MLR1

- Test chip for fast CSA front-end
- 2 x 2 pixels + test circuits

APTS

- Analog test chip
- 4 x 4 pixels
- Different pitches, layouts & frontends

V2 ER1

- FE test chip for H2M
- 2 x 2 pixels
- Improved CSA front-end

H2M

- 3 x 1.5 mm² chip area
 - 64 x 16 square pixels, 35 um pitch
 - Krummenacher-type CSA front-end
- Full digitization

16/06/2025

Digital-on-top design workflow CSA outpui

Hybrid-2-Monolithic: Integrated Digital-on-Top Design

Timepix-like 4 acquisition modes: •

ToT

Ports a hybrid pixel detector architecture

8 bit ToT,

ΓοΑ

- 8 bit ToA (100 MHz clock 10 ns binning),
- photon counting (number of hits above threshold),

THL

Time

1 count

triggered (binary readout after hit validated by ext. trigger)

S. Spannagel - Semiconductor Detector R&D - DESY Detector Retreat

Integrated into the Caribou DAQ system

- Re-usable hardware, firmware and software
- Supports ~20 different prototypes

•

•

Constellation

Autonomous Control and **Data Acquisition System**

Constellation is a control and data acquisition system for small-scale experiments and experimental setup with volatile and dynamic constituents such as testbeam environments or laboratory test stands.

Get Started	Concepts
See Application Deve	loper Guide →
See Framework Refe	rence

9 Autonomous

Constellation operates without a central server, satellites exchange heartbeats to keep in touch.

Fast Integration

The finite state machine and satellite interface are designed for fast and easy integration of devices.

(n) Flexible

Automatic network discovery of satellites make it easy to add and remove satellites on the fly.

Robust

Constellation is based on widely adopted networking libraries such as ZMQ and MsgPack.

Some early adopters:

CMS

electronCT **DESY DGP project**

Beam Instrumentation Group Timepix4 Beam Telescope

ΔB

Website & Documentation https://constellation.pages.desy.de

Testbeam Performance of H2M

- Measurements performed at DESY II Testbeam Facility
- Crucial facility for detector R&D

- Corryvreckan Testbeam Data Analysis Tool
- Developed & maintained at DESY
- Standard tool used by all LHC experiments, future collider studies & beyond

- H2M prototype is fully efficient at threshold 144 e-, bias -3.6 V
- Higher efficiency was expected from preliminary simulations...

Allpix Squared

The Semiconductor Detector Monte Carlo Simulation Framework

... I spare you the logos of> 35 collaborating institutes &> 70 contributors

The Allpix² Framework

- Leading Monte Carlo simulator for semiconductor detectors
- Now > 8 years of development with
 - 54 releases, current version 3.2.0
 - More than 70 code contributors
 - More than 160 citations
- Development & maintenance: DESY, Nikhef

Yearly User Workshops

Combining Tools for Full End-to-End Simulations

Simulating response to minimum ionizing particle incident perpendicular to surface

A Simplistic Approach

- Applying linear electric field
 - Bias voltage -1.2 V
 - Depletion depth 10 µm
- Carrier mobility:
 - Standard Canali model (doping-independent)

- Diffusion dominant in undepleted volume
- Linear drift of charge carriers towards sensor surface, no drift to electrodes
- Large charge cloud & cluster size, significant signal contribution from substrate

holes

Realistic Simulation Requires More Information

z (μm)

- Applying TCAD electric field
 - Bias voltage -1.2 V
 - Depletion depth 10 µm
- Setting doping for epi & subs.
- Carrier mobility:
 - Masetti-Canali model (doping dependent)
- Recombination: combined SRH-Auger model

• Carrier drift obeys sensor features (p-wells), collection at electrodes

electronsholes

- Significant reduction of diffusion in highly-doped substrate, less charge sharing from substrate contributions
- Significant reduction of substrate contributions due to short lifetime in high-doping volume

Back to H2M: Non-Uniformity of In-Pixel Response

Confirmation by Simulation with N-Wells

1.00

0.95

0.90

0.85

0.80

0.75

0.70

1.00

0.95

0.90

Efficiency

0.80

0.75

0.70

•

Efficien

- Simulation with realistic doping profiles
- Includes n-well structure within p-well
- Simulation can qualitatively reproduce effect in **efficiency as well as ToA**
- Slowing-down of charge carriers traveling below large n-wells

SOPHIE Silicon Photonic Integrated Electronics A Helmholtz Innovation Pool Project

Monolithic Silicon Photonics

Bandwidth & power consumption of data transmission **critical for future experiments**:

 $\frac{1 \, cm^2 \text{chip area}}{(15\,\mu\,m)^2 \text{pixel pitch}} \ge 450 \, kPix \rightarrow 450 \, kPix \cdot 20 \, \text{bit} \cdot 10^{-5} \text{occupancy} \simeq 90 \, b \rightarrow \frac{90 \, \text{bit}}{20 \, ns} \ge 4.5 \, Gb \, s^{-1} cm^{-2}$

Electronic-Photonic Integrated Circuit

GF's 45-nm SOI CMOS industry-grade process

Advanced Packaging

Scalable to exploit full potential of CMOS process

Monolithic - photonics & electronics on a chip

Fiber-chip coupling & electrical/optical interposer

Perspectives From The SOPHIE Project

- Investigate & select packaging technologies
- Apply to 1st single-chip detector
- Investigate & select photonic interposer technologies
- Elaborate detector concepts
- Build a demonstrator

OCTOPUS

Optimized CMOS Technology for Precision in Ultra-thin Silicon The 1st Project in the Framework fo the ECFA DRD3 Collaboration

S. Spannagel - Semiconductor Detector R&D - DESY Detector Retreat

DRD3 Project OCTOPUS

The ECFA Detector R&D Collaborations

- Addressing challenges of future particle physics experiments
- DRD3 focusing on Solid State Detectors & Technologies

OCTOPUS – A Project for a Future Vertex Detector

- DRD goal: "Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors"
- Development of a **monolithic sensor prototype**
- **Staged approach:** further refinement of performance targets after conclusion of strategy update
- Intermediate target: Development of high-resolution sensors for beam telescopes

Summary

- Strong Semiconductor Detector R&D at DESY-FH
- Strategic goal: develop technology for next generation of particle physics experiments
 - Challenging specs, require novel approaches
 - Key technology: Monolithic detectors, highly integrated systems
 - Many applications possible on the way
- DESY-FH develops several tools crucial to detector R&D
 - Many have become standard in HEP
 - Some well beyond particle physics
 - DESY has a lot of visibility in community through development & maintenance

DESY-FH is applying its expertise to future projects OCTOPUS, SOPHIE, tools for Detector R&D...

