Zeuthen Detector R&D for MT-DTS

Astroparticle, Particle & Accelerator Detector R&D @ Zeuthen

Steven Worm

DESY June 16, 2025

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Zeuthen Detector R&D: Outline

- AP Gamma & Neutrino group $R&D \rightarrow Timo's talk$
- Quantum Sensing & Optical Atomic Clocks
- Silicon MAPS
- newASTROGAM
- Detector R&D for Medical

Quantum Sensing @ CQTA

- Physics beyond colliders: fantastic new tools lead to new, innovative table-top experiments
- QS essential for ultra-light Dark Matter (eg axion/ALPs)
- Search for variations in alpha optical atomic clock based on trapped, highly charged ion
- Strong links to quantum computing, FH, AP, FS, Accelerator
- QTF-Backbone Uhrennetzwerk, InnoPool QS4Physics, DRD5

DESY. | MT-DTS Detector Retreat | Steve Worm | June 16 2025

Optical Atomic Clocks w/ lons

- Ultra-stable laser excites atomic transitions \rightarrow a clock
- Laser/sympathetic cooling with a second ion (eg Be+)
- Frequency comb: optical \rightarrow countable microwave
- Example: Highly charged ions (HCI) for best sensitivity to $\Delta \alpha / \alpha$ for ultra-light dark matter interactions

DESY electron beam ion trap (EBIT)

...see poster

Silicon Sensor R&D: MAPs

Monolithic Active Pixel sensors

- Tower 180nm: modified optical CMOS process, epi+CZ
- DECAL: reconfigurable strip or pad for calorimetry
- MALTA: tracking/vertexing, rad tolerant
 <u>></u>3e15 n_{eq}/cm²
- Radiation tolerance and charge collection studies
- Edge TCT & testbeams in progress

Next steps in MAPs R&D for Zeuthen

- New MALTA3 design under study
- MALTA pixel with gain layer being developed
- Target higher rad hardness, sub-ns timing
- Longer-term plans forming now

...see poster from Vlad Berlea

newASTROGAM: MeV Gamma-Ray Satellite

- newASTROGAM proposal:
 - 2700 double-sided Si-strip detectors (75 layers, 36 DSSD per layer)
 - 9.5cm x 9.5cm detector area
 - 240µm/480µm strip pitch
 - 500µm thickness
 - 359,424 channels
 - ~350 W power budget

DESY.

DESY.

newASTROGAM

... a timeline (if newASTROGAM is selected in ESA M8 call)

- Lead proposers: Germany, Italy and France lacksquare(plus contributions from DK, IE, PL, PT, ES, SE, and CH)
- DESY focus will be on SI-tracker \bullet
- R&D (Phase 0/A) and construction efforts are funded by DLR (after selection by ESA) \bullet
- Timeline:

Date	Event
April 2026	Proposals due
Q4 2026	Start of Study Phase 0
Q4 2027	Selection of Phase A candidate
2026 - 2030	Phase 0/A study
Q2 2030	Mission selection
2030 - 2032	Phase B1
Q4 2032	Mission adoption
2032 - 2041	Payload integration & testing
>= 2041	Launch

BESY: | MT-DTS Detector Retreat | Steve Worm | June 16 2025

	Notes
	Up to 5 candidates
S	Selection of up to 3 candidates
	Develop final instrument design, few FTE effort
	Selection of mission to be launched
	Ramp-up to production
	Full construction efforts after this date
l	Production / integration / testing of "flight mode

Silicon detector R&D

newASTROGAM phase 0/A or mission independent

- **Current baseline technology is DSSD** for Si-Tracker \bullet
 - For Compton regime xy-resolution in single detector mandatory
 - Strict power budgets for space missions favor lower channel count of strip detectors
 - But: challenging to manufacture, in particular for the high volume needed \bullet
- Low-power CMOS pixel detectors are an emerging alternative lacksquare
 - AstroPix developed by KIT (Group of I. Peric)
 - Currently investigated as tracker option for MeV ulletgamma-ray telescope AMEGO-X (NASA proposal)
 - Current generation: AstroPix4
 - Mentioned as alternative to baseline DSSD-based tracker in newASTROGAM proposal

KRANOS: ⁴⁰**K Radiation for Advanced Neuroimaging Of Strokes**

- Scintillation-crystal device to measure K in brain from radioactive isotope instead of stable isotope
- K imbalance demonstrated to correlate with negative health outcomes (e.g. strokes)

Challenges

- detectors
- portability

Opportunities

- low-income areas

Synergies

DES

High detection efficiency - completely different design than traditional MeV gamma

background rejection

Novel technology for neuroscience Affordable device would solve stroke patient management challenges of remote or

MeVCube - compton identification, MeV energy range LUXE - same electronic boards

Detektion mit Techniken aus der Astro- und Teilchenphysik

...P. Pani, C. Seitz, V. Berlea

Dosimetry for FLASH radiotherapy

DESY. | MT-DTS Detector Retreat | Steve Worm | June 16 2025

Zeuthen Detector R&D for PoFV

AP Detector R&D

- IceCube, RNO-G \rightarrow prepare for IceCube Gen2 and the next big thing (beyond KM3Net). • ULTRASAT/MeVCube \rightarrow plan to develop space-based detectors for MeV gammas: newASTROGAM • CTA \rightarrow R&D for compact, low-power SiPM replacement of current photomultipliers Experiments in harsh (polar, desert, space) environments with precise timing over 10s of kilometers

Quantum Sensing

- Atomic clock experiment for variations in alpha; develop hardware expertise in quantum sensing & cold atoms experiments Develop quantum sensing community and infrastructure via support for R&D, fibre networking (QS4Physics InnoPool, QTF-
- Backbone Uhrennetzwerk, CQTA, DRD5)
- Investigate new quantum sensing applications for tracking or calo (e.g. quantum dots)
- Silicon Pixel (MAPS) development
 - Targeted application in tracking (MALTA) or digital calorimetry (DECAL)
 - MALTA \rightarrow next-gen MAPS with focus on improved timing (sub-ns), rad hardness (>3E15), high hit rate (>100 MHit/cm2) •

Medical R&D

- Test silicon, diamond, chemical detectors/films, gas & fluorescence detection, etc, using unique facilities at DESY (PITZ) Develop new technologies for higher rates, potentially with industrial partners (e.g. NitroFLASH)
- Develop ⁴⁰K detectors for early stroke detection

11