

Cu-based Nb₃Sn QPR sample preparation via bronze route

Ming Lu Helmholtz-Zentrum Berlin (HZB) 16-06-2025

- 1. Background and research basis
- 2. Nb₃Sn sample preparation activities
 - 1: Nb₃Sn/Cu QPR sample
 - 2: Nb₃Sn/Nb QPR sample
 - **3: Optimization of bronze route Nb₃Sn**
- 3. Next step work plan schedule

One achievable way : Nb₃Sn/Cu bronze route HZB Helmholtz Zentrum Berlin

1. The copper can facilitate the interdiffusion between Nb and Sn by 7~10 magnitudes of orders.

2. The copper alloy will be excluded from the Nb₃Sn phase by itself.

[1] H. Müller and T. Schneider, "Heat treatment of Nb3Sn conductors," Cryogenics, vol. 48, pp. 323-330, 2008/07/01/2008.
[2] L Mei, Z Du, C Guo, & C Li. (2009). Thermodynamic optimization of the cu-sn and cu-nb-sn systems. Journal of Alloys & Compounds, 477(1-2), 104-117.

Nb₃Sn/Cu QPR sample prepare procedure

> The first Nb₃Sn/Cu QPR sample RF properties have been tested at HZB.

First Nb₃Sn/Cu QPR sample RF test

> 412 MHz: R_s is measured to be about 104 n Ω at 4 K and 10 mT (main R_{res}).

> The Nb₃Sn/Cu coating quality is not very good: Severe Q-slope and RF heat limit occur.

Sebastian Keckert

First Nb₃Sn/Cu QPR sample RF test

The superconducting transition temperature of Nb₃Sn is low (VNA data), which is suspected to be caused by insufficient tin content in the Nb₃Sn sample. This has been verified in Nb₃Sn/Cu sample PPMS tests.

Current Nb₃Sn/Cu problems and solutions HZB Helmholtz Zentrum Berlin

Nb₃Sn/Cu Problems:

- (1) $T_c: 14K, R_s: 104n\Omega$ @4.0K,10mT
- Porous Nb₃Sn, Nb exposed on top, Cu exposed on side and bottom
- (3) Surface contamination, impurities

The first Nb₃Sn/Cu QPR sample

Several parts of challenges:

 Nb layer: Porous Nb -> Porous Nb₃Sn Solutions: Hipims, Nb: T>600°C, Thickness~30μm, FE/laser treatment, Nb/Ta(Tantalum)/Cu layer

2. Structure: Bottom of QPR sample expose Cu Solutions: **Only coating bronze on top area**

3. Impurity: CuO₂,SnO₂,Nb₂O₅,C-H... Solutions: **Ultrasonic cleaning**, Aqua regia, HF activator

IMR

1. Background and research basis

2. Nb₃Sn sample preparation activities

1: Nb₃Sn/Cu QPR sample

- 2: Nb₃Sn/Nb QPR sample
- **3: Optimization of bronze route Nb₃Sn**
- 3. Next step work plan schedule

Optimized anode structure and key parameters:

- Anode structure:
 - 1. Electroplating protective glue treatment, only the top area of the QPR sample is electroplated
 - 2. Only disk anode
- COMSOL simulation:

The difference in current density: 1-2 times Current range: 3-4 mA/cm²

- Parameters:
 - 1. CC mode: 0.1 A
 - 2. Electrode distance: 50 mm
 - 3. Temperature: 15 °C
 - 4. Stirring speed: 100 rpm
 - 5. Electroplating time: 2 h (10 μ m)

1. Nb/Cu QPR sample: Only coating top area

- \checkmark To prevent copper exposure on the bottom, we only perform bronze coating on the top.
- ✓ This sample is testing for RF performance at HZB now (37 n Ω at 4 K and 10 mT).

- The QPR sample was bronze plated on the top and heat treated, but holes were found, which were caused by bubbles on the surface.
- We have conducted a repair experiment by slowly dipping the surface into the solution at the 30 angle to reduce surface bubbles.

HZB Helmholtz Zentrum Berlin

- ▶ Bulk Nb QPR sample fabrication in China and baseline test at HZB.
- Nb₃Sn/Nb as an intermediate step to accelerate iterative optimization of bronze process.

Bulk Nb sample, manufactured at Lanzhou, China 2025-01-14 labeled "F2" 2025-01-14 Weight measured 848.38 g +- 0.03 g 2025-01-14 avg distance flange to sample top 95.113 mm 2025-01-23 BCP 10μm Weight measured 845.55g+-0.05g 2025-02-07 BCP 70μm Weight measured 827.62g+-0.05g 2025-02-13 baking 800°C for 3h, heating rate 3°C /min 2025-02-17 BCP 24μm Weight measured 821.43g+-0.05g

Initial Nb

BCP 120µm

Coating bronze

Heat treatment

Remove top

2. bulk Nb QPR sample baseline test

- The measured R_s (2–5 n Ω at 2K) decreases exponentially with temperature, showing excellent agreement with BCS theory.
- The extracted energy gap Δ remains in the range of 1.76–1.81 meV, indicating high-purity niobium with low residual resistance (1.6–3 n Ω), reflecting good surface quality.

IMP

2. large Nb₃Sn/Cu sample preparation

Trap flux test of bronze route Nb₃Sn samples using TraMaFlu devices

- \blacktriangleright We have prepared large-sized Nb₃Sn samples of 100*60*3mm and will conduct flux trap tests.
- The results of trapped flux of Nb₃Sn/Nb/Cu are different from those of bulk niobium, which is very valuable for the study of multilayer films.

Background and research basis Nb₃Sn sample preparation activities Nb₃Sn/Cu QPR sample Nb₃Sn/Nb QPR sample Optimization of bronze route Nb₃Sn Next step work plan schedule

3. Optimization of Nb₃Sn/Cu surface morphology HZB Helmholtz Zentrum Berlin

 \checkmark Not porous anymore

3. Optimization of Nb₃Sn surface impurity recipe **HZB** Helmholtz Zentrum Berlin

3. Optimization of Nb₃Sn heat treatment curve ^(C) HZB Helmholtz Zentrum Berlin

IMP

3. Nb₃Sn/Cu small sample T_c optimization [©]

Through PPMS testing, it was found that increasing the Nb sputtering temperature and increasing the thickness of the Nb barrier layer can effectively improve the quality of Nb₃Sn coating, and T_c was increased from 13.0K to 16.5K.

IMR

HZB

Helmholtz

3. Nb₃Sn/Cu small sample H_{c1} optimization

In addition, M-H tests were conducted and it was found that the lower critical magnetic field H_{c1} also increased from 300Oe to 500Oe.

IMP

Next step work plan schedule

- Aim: high quality Nb₃Sn by bronze route
 - Nb₃Sn/Cu surface impurities optimization. (Cu, Oxides, Carbides).
 - Nb₃Sn coating growth mechanism study and grain control. Nb₃Sn/Cu RF loss analysis and loss mechanism study.
- Next work: next six months
 - Nb_3Sn/Cu QPR sample will be optimized to increase T_c . Trap flux study of Nb_3Sn coating on Nb substrate (TraMaFlu).
- Future work: next two years
 - Small samples -> larger samples -> QPR samples -> 1.3GHz cavities.
 - 1.3GHz copper cavity Nb sputtering + bronze route Nb₃Sn coating.

• Small/QPR sample

preparation process

31.12.25

Thanks for your attention.

