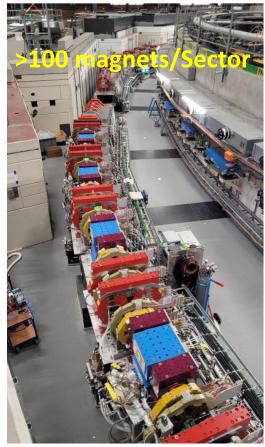
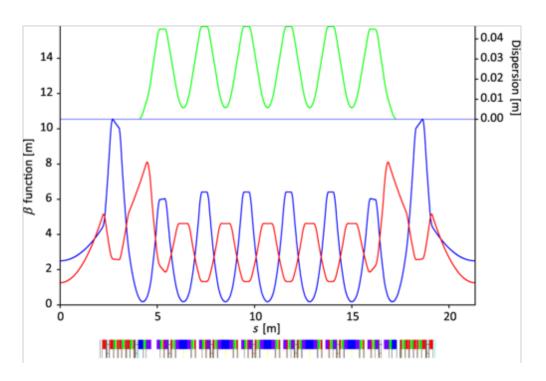


Lessons Learnt in the Commissioning of Swiss Light Source 2.0


M. Aiba on behalf of SLS 2.0 team 08.10.2025
Low Emittance Ring Workshop DESY, Hamburg, Germany

Overview of SLS 2.0

- New 4GLS storage ring
- Primary goals
 - Emittance, 40 times lower
 - Hard X-ray, 100 times brighter
- Key parameters
 - C: 288 m, reusing building and injector
 - Natural emittance: 158 pm w/o ID
 - Beam energy: 2.4 GeV → 2.7 GeV came with negative α → positive α
- Key technologies
 - NEG coating
 - Permanent magnet (PM)
 - HOM damped cavity
- Challenges
 - Compact lattice, 7BA with PM
 - → Mechanical integration
 - → Feasible?
 - Short dark time, tight schedule
 - → All systems ready on Day-1


Parameters	SLS today	SLS upgrade
Lattice type	TBA	7-BA
Number of arcs	12	12
Circumference (m)	288	288
Gross straight length (m)	79.9	83.6
Total bending angle (deg)	374.69	430.08
Working point Q_x/Q_y	20.43/8.74	39.37/15.22
Momentum compaction		
factor, first/second order (10 ⁻⁴)	6.04/36.3	1.05/7.94
Natural chromaticity ξ_x/ξ_y	-67.3/-21.0	-99.0/-33.4
Vertical emittance (pm)	≈10	10
Chromaticity in operation	5	1.0-1.5
Energy (GeV)	2.411	2.700
Natural emittance (pm)	5630	158 (135)
Energy spread (10^{-3})	0.88	1.16 (1.04)
Radiation loss per turn (keV)	549	688 (915)
Damping partition $J_x/J_y/J_s$	1.0/1.0/2.0	1.83/1.0/1.17
Damping time $\tau_x/\tau_y/\tau_s$ (ms)	8.65/8.67/4.34	4.14/7.58/6.47
Beam current (mA)	400	400
Maximum rf voltage (MV)	2.6	2.2
Harmonic number	480	480
Number of bunches	390-420	450
Beam lifetime (h)	≈10	≈9

More details

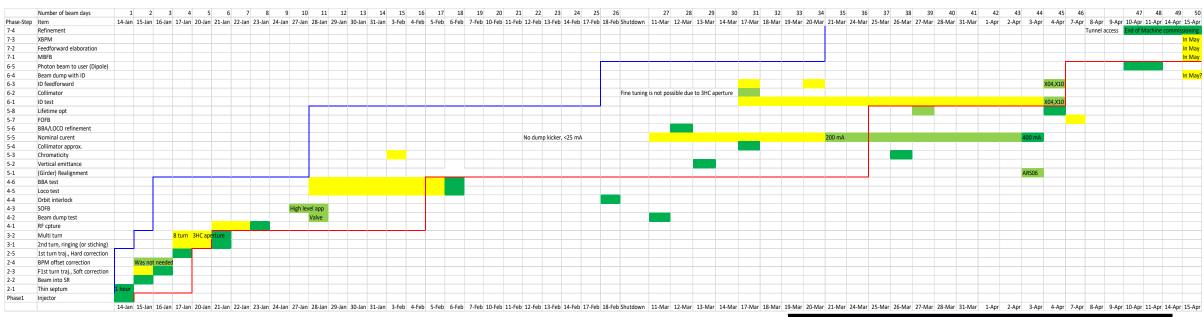
- Talk on SLS2.0 upgrade project by H. Braun, this session
- Talk on SLS2.0 magnets by G. Montenero, Thursday afternoon

7BA lattice

- Permanent magnets
 - Longitudinal Gradient Bend

- Reverse bend
- Electromagnets
 - Matching quad

- Sextupole
- Oct. + Normal & Skew Qs (0.32 T)
- Orbit correctors (800/600 urad)
- Orbit and linear optics along the achromat are entirely based on permanent magnets!
- Pseudo-symmetry: same phase advance for S, M and L straights
- Limited corrector strength
- Significant magnetic crosstalk compensated by magnet optimization/tuning (backup slide)



Machine commissioning plan: 7 Phases

- Phase 1: Injector / 2024 Dec
- Phase 2: First turn / 1+3 days
- Phase 3: Multi-turn / 1+0 days
- Phase 4: Accumulation, Basic feedback, Linear optics / 8+3 days
- Phase 5: Nominal current, Advanced setting, Feedback / 15+5 days
- Phase 6: Insertion devices and Collimator / 9+0 days
- Phase 7: Finalization, Elaboration / Open end
 - Shift plan was one (long) shift per weekday, and vacuum conditioning over night and weekend as long as we were on schedule
 - No weekend shift was needed in reality

Actual progress

- Machine commissioning is completed almost as planned
 - First electron into storage ring on 14th January
 - First stored beam on 23rd January
 - Design beam current, 400 mA, on 3rd April
 - First light to dipole beamlines on 10th/11th April
- We made it within 50 beam days!

Figure by courtesy of B. Rösner Thanks to PX beamline colleagues

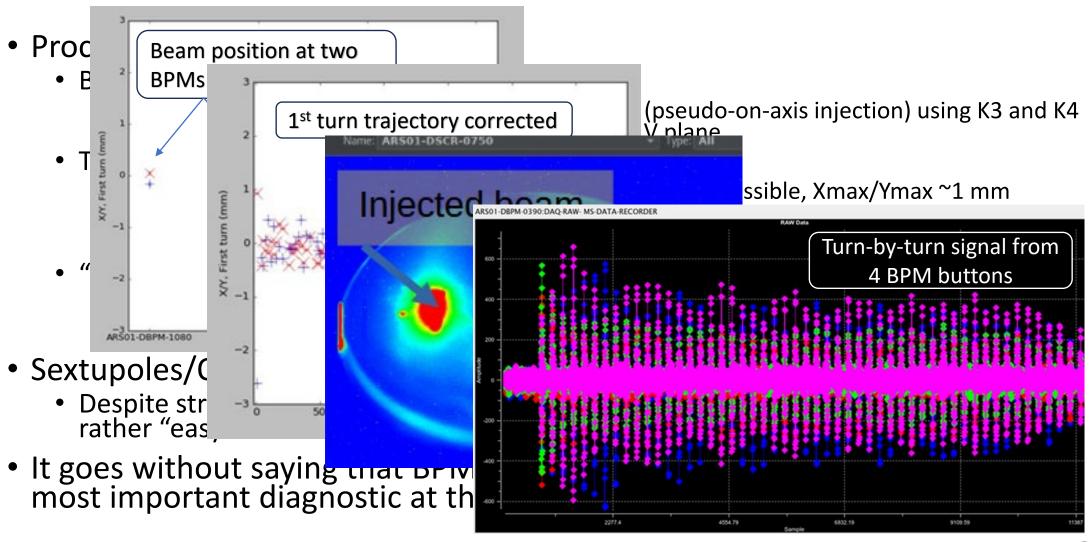
Getting first stored beam

- 14th Jan: Injector restart. Beam going through the thin septum
- 15th Jan: Beam going through first three sectors. Sector-4 BPMs were not triggered...
- 16th Jan: LGB realignment (correcting "known misalignments"), almost one turn
- 17th Jan: One turn and shortly after 8 turns achieved, but not more...
- 20th Jan: 5 turns but not more...
- 21st Jan: Taper into 3HC was blocking the injected beam, and realigned, ~40 turns
- 22nd Jan: Sextupole/Octupole ramped up, orbit correction, ~125 turns
- 23rd Jan: RF capture and stored beam! Individual cavity phasing was needed

^{*} BPM commissioning was undergoing in parallel during these first days

Machine commissioning plan: 7 Phases

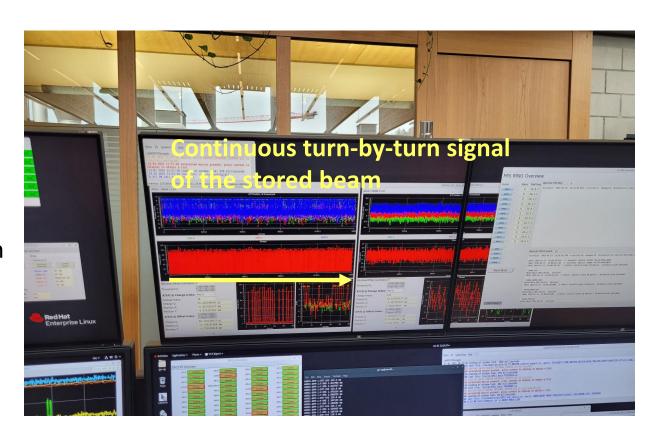
- Phase 1: Injector / 2024 Dec
- Phase 2: First turn / 1+3 days
- Phase 3: Multi-turn / 1+0 days
- Phase 4: Accumulation, Basic feedback, Linear optics / 8+3 days
- Phase 5: Nominal current, Advanced setting, Feedback / 15+5 days
- Phase 6: Insertion devices and Collimator / 9+0 days
- Phase 7: Finalization, Elaboration / Open end



Orbit threading

- Procedure
 - Beam launch into the storage ring
 - Injected beam was centered at the first two BPMs (pseudo-on-axis injection) using K3 and K4 in H plane and transport-line vertical correctors in V plane
 - Threading based on model matrix
 - 1st turn correction without cutting many eigenvalues was possible, Xmax/Ymax ~1 mm
 - BPM electronic offsets were corrected before commissioning
 - 300 um (assumed in simulation) vs 228/116 um (BBA in Phase 4)
 - "Stitching"
 - Correctors upstream of the septum were manually adjusted with all four bump kickers ON
 → Multi turns achieved, and switching to the orbit mode
- Sextupoles/Octupoles were OFF
 - Despite strong focusing MBA lattice, transporting the beam through linear lattice is rather "easy"
- It goes without saying that BPM in turn-by-turn mode was essential and most important diagnostic at this stage.

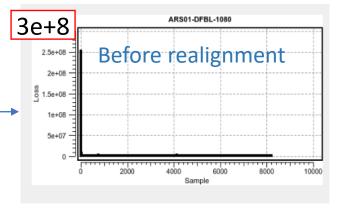
Orbit threading

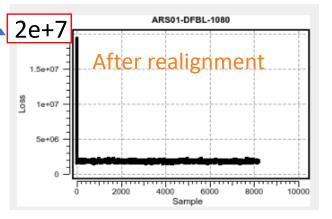

Machine commissioning plan: 7 Phases

- Phase 1: Injector / 2024 Dec
- Phase 2: First turn / 1+3 days
- Phase 3: Multi-turn / 1+0 days
- Phase 4: Accumulation, Basic feedback, Linear optics / 8+3 days
- Phase 5: Nominal current, Advanced setting, Feedback / 15+5 days
- Phase 6: Insertion devices and Collimator / 9+0 days
- Phase 7: Finalization, Elaboration / Open end

First stored beam

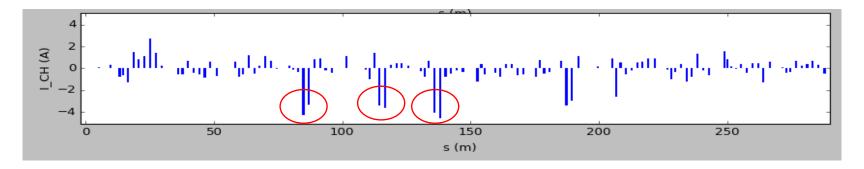
- Sextupoles/Octupoles ON
- RF capture
 - Phase scan, cavity by cavity
 - On-crest phase ← Maximum turn
 - Phases were set to the synchronous phase
 - → Beam captured!

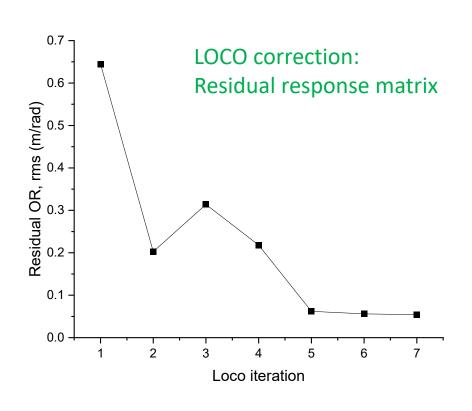



Injection

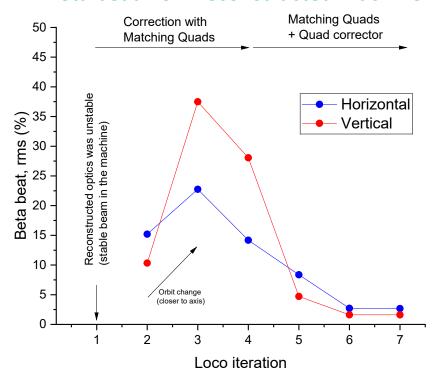
- Kicker bump injection (SLS1 kickers reused)
 - Easy to start with
 - Overdriven until the first stored beam (no accumulation possible)
 - Accumulation right after the first stored beam by switching to nominal setting
- Injection efficiency
 - · Vacuum chamber downstream of the thin septum was largely misaligned, very poor efficiency
 - After realignment, ~80% efficiency achieved (Transfer line ICT vs Ring PCT)
 - New 3HC taper with bellows installed,
 ~100% efficiency achieved (Transfer line ICT vs Ring PCT)
- In Phase 7
 - Booster extraction and Transfer line tuning mitigated the residual beam loss, ~100% efficiency achieved (Booster PCT and Ring PCT)
 - Keeping ~100% efficiency is next challenge; sometimes it drops to <90% though >90% most of time.
- Plan for Aperture sharing/Quasi-on-axis injection
 - Stripline kicker, 20ns/2 ns pulse, is under development; PSI contribution to iFAST WP7
 - Prototype tested at ESRF-EBS
 - Prototype final test in this month → Kicker design to be finalized

Turn-by-turn signal from BLM (Libera) in the injection straight



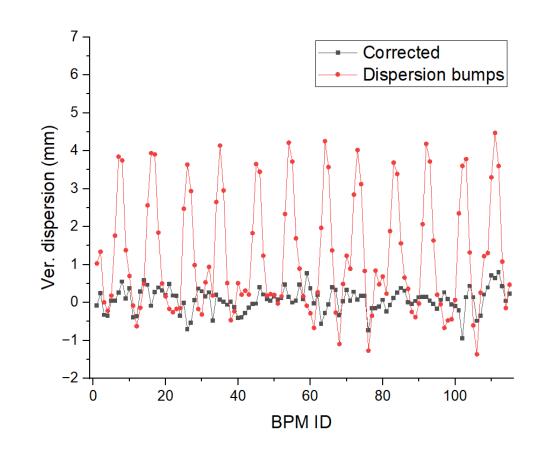

Orbit correction

- BPM (quick) beam-based alignment
 - 115 BPMs aligned within about 10 um. Can be done in about 3 hours.
- No problem in V plane: Correctors within ±4 A while the limit is at ±5 A
- In H plane, not enough corrector strength
 - BBA constant (BPM offset) was manipulated in Sector 4, 5 and 6 by 200 um or so, to prevent the corresponding correctors from reaching to their limit
 - Fixed in Phase 7



Linear optics correction

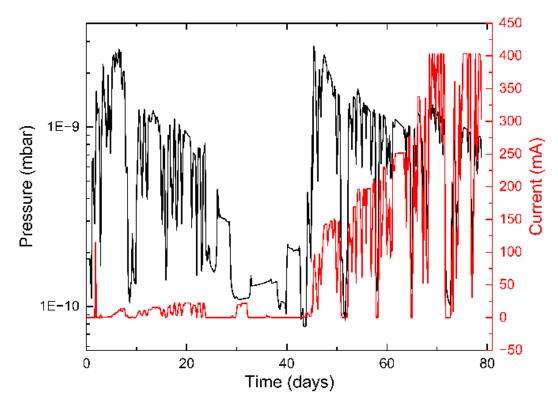
Beta beat from reconstructed machine



- Correction with only matching quadrupoles, and then the quad correctors were included
- Dispersion correction (backup slide)

Vertical emittance control

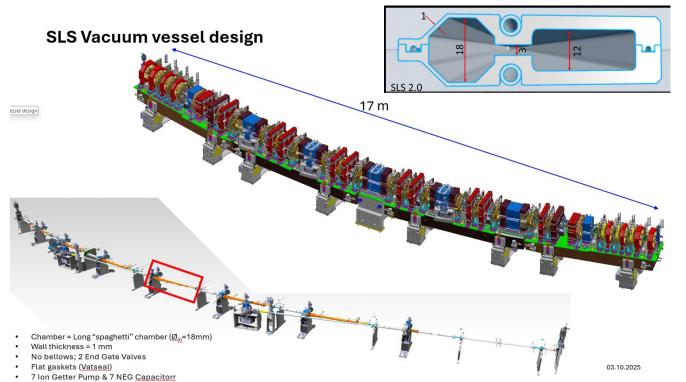
- Coupling and V dispersion were corrected first using skew quads
- Vertical dispersion bumps was introduced to control V emittance
 - This static approach is convenient for the early stage of commissioining
 - Emittance dilution utilizing bunch-by-bunch Feedback is considered
- Nominal V emittance = 10 pm


Machine commissioning plan: 7 Phases

- Phase 1: Injector / 2024 Dec
- Phase 2: First turn / 1+3 days
- Phase 3: Multi-turn / 1+0 days
- Phase 4: Accumulation, Basic feedback, Linear optics / 8+3 days
- Phase 5: Nominal current, Advanced setting, Feedback / 15+5 days
- Phase 6: Insertion devices and Collimator / 9+0 days
- Phase 7: Finalization, Elaboration / Open end

Reaching 400 mA and vacuum conditioning/scrubbing

- <25 mA until the beam dump kicker was installed
- Two scenarios were considered in the planning:
 - Scenario A: No need to close the bunch-by-bunch feedback (BBBF) loop
 - Scenario B: Coupled bunch mode instability requires BBBF, increasing chromaticity or 500 MHz cavity tuning...
- Thanks to the new HOM damped cavities, Scenario A was the case. This made our life much easier!
 - Ion instabilities observed as expected with >100 mA.
 Otherwise, no instabilities observed up to 400 mA
- Some hot spots observed with temperature sensors at 400 mA...
 - Additional water cooling where necessary
- About 160 A.hours provided by April 15th
 - No aggressive scrubbing applied; Vertical pinger at 3 Hz
 - Beam lifetime of 8 hours was achieved → ~12 h in July



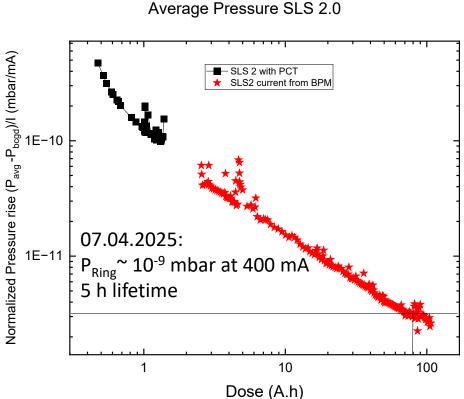
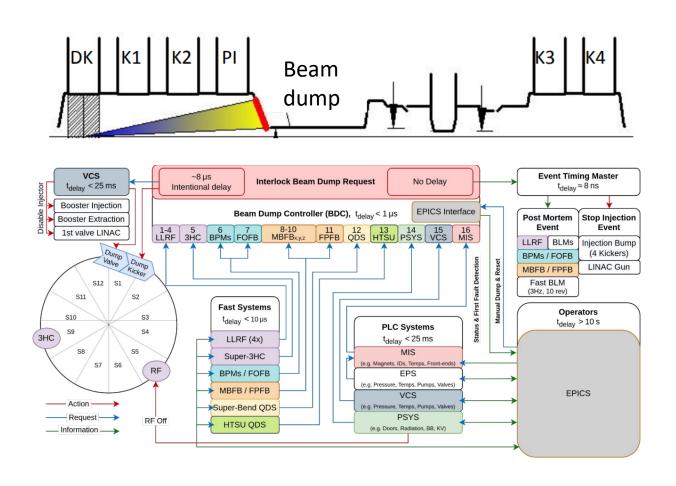

Average pressure and Beam current January 25th to April 15th 2025

Figure from R. Ganter

Vacuum system



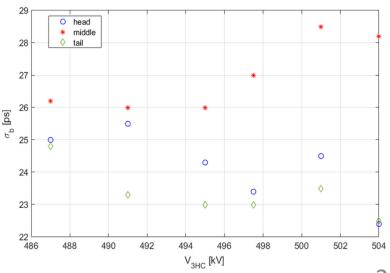
- Aggressive design "no bellows over 17 m"
- Beam dose of 100 A.hour → Minimal conditioning
- Pressure better in the arc chamber with NEG (< 1e-9 mbar) than some other parts not coated (>1e-9 mbar)

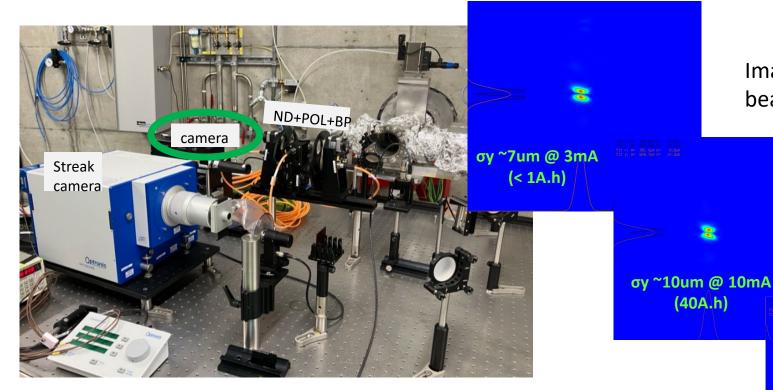
Beam dump and Machine protection

- Machine protection system
 - Protect thin vacuum chambers, IDs, ring permanent magnets, etc.
 - Designed to react within ~100 us
 - Beam is safely dumped even for the worst event, i.e., power cut
- Dump kicker and internal beam dump
 - Integrated into the injection straight
 - Slope of the sinusoidal kicker pulse spread the bunch train on the beam dump surface

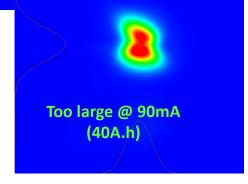
500 MHz RF system

- New HOM damped cavities
 - Large beta functions at the RF location
 - New digital LLRF system
 - Pre-conditioning at test stand
 - Sophisticated tool was available since commissioning Day-1: beam recovery after beam damp as quick as possible
 - Harmonic number = 480
 - Nominal filling = 450 bunches uniform
 - Two gaps or 50-bucket long gap to avoid ion instability when it was necessary
 - No coupled bunch mode instability up to 400 mA




Third harmonic cavity, passive SC

- SLS1 3HC cavities reused
 - Tuning system and cryo-plant upgraded
- Approximately tuned during the beam current increasing
- In Phase 7, further tuning with streak camera
 - Operating point: ~501 kV
 - Bunch length: ~10 ps w/o HC vs ~25 ps average with HC

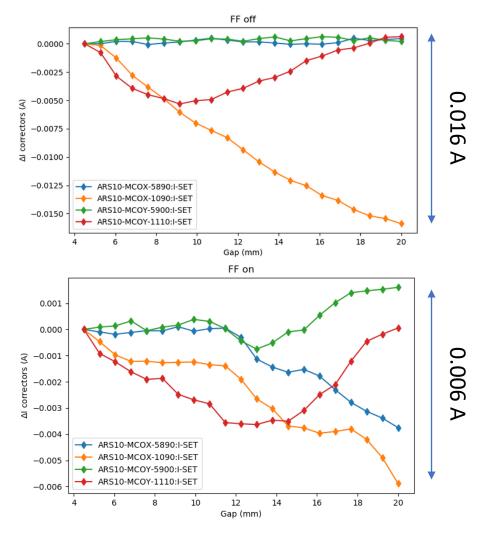


Images from π -polarization beam-size monitor

PSI

- Significant V beam size increase was observed when the vacuum pressure was high
 - Small-angle/multiple scattering with residual gas (?)
- Later, with good vacuum, the monitor was used to confirm the vertical emittance control

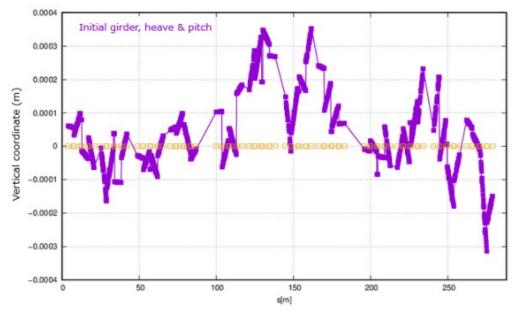
(40A.h)

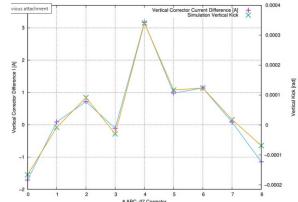

Machine commissioning plan: 7 Phases

- Phase 1: Injector / 2024 Dec
- Phase 2: First turn / 1+3 days
- Phase 3: Multi-turn / 1+0 days
- Phase 4: Accumulation, Basic feedback, Linear optics / 8+3 days
- Phase 5: Nominal current, Advanced setting, Feedback / 15+5 days
- Phase 6: Insertion devices and Collimator / 9+0 days
- Phase 7: Finalization, Elaboration / Open end

Preparation for ID beamline commissioning

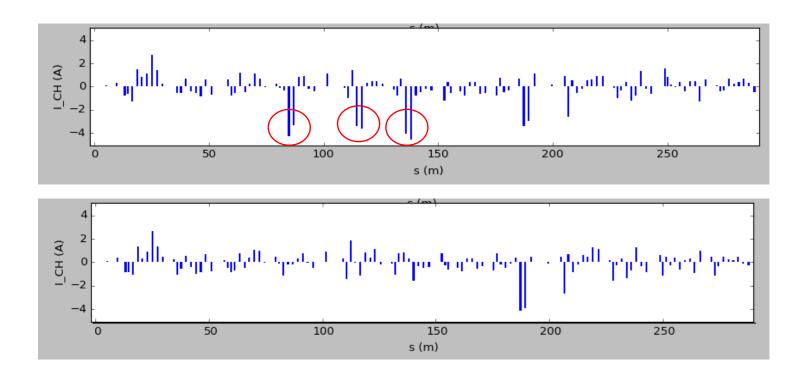
- Beamline vacuum conditioning
 - Before starting ID beamline commissioning, ID gaps have been closed to condition the vacuum up to the photon shutter
- Orbit feedforward tables have been measured and applied
 - 4 correctors are attached to undulator (H/V/upstream/downstream)
 - Gap dependence of the orbit feedback correctors is reduced
- Tune and coupling feedforward are considered


Machine commissioning plan: 7 Phases


- Phase 1: Injector / 2024 Dec
- Phase 2: First turn / 1+3 days
- Phase 3: Multi-turn / 1+0 days
- Phase 4: Accumulation, Basic feedback, Linear optics / 8+3 days
- Phase 5: Nominal current, Advanced setting, Feedback / 15+5 days
- Phase 6: Insertion devices and Collimator / 9+0 days
- Phase 7: Finalization, Elaboration / Open end

Realignment campaign (1)

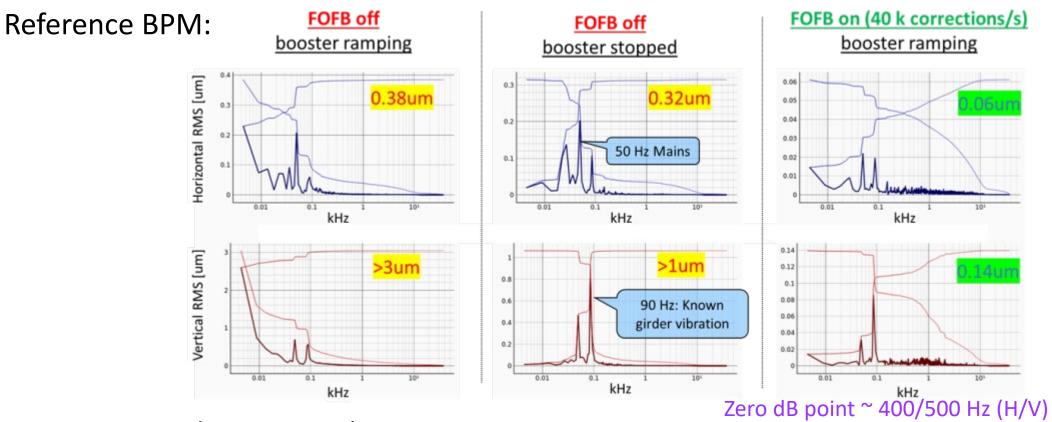
- Vertical girder alignment
 - Girders are motorized and can be remotely aligned from the control room
 - Beam Assisted Girder Alignment (BAGA)
 - · Girders were moved with stored beam and FOFB running
 - New corrector setting is obtained immediately
 - All girders were aligned to the reference (Y=0)
- Horizontal girder alignment
 - Manual alignment in the tunnel; not motorized in H plane
 - Girders in Sector 5 were aligned during the last shutdown in August
 - It is not necessary to align all the girders; horizontal alignment is planned for a few more locations
- Some beamline components need to be realigned
 - Difficulty to establish smoothly-connected alignment network between the machine and the beamline



Simulated and actual vertical corrector changes. Good agreement indicates well-corrected optics.

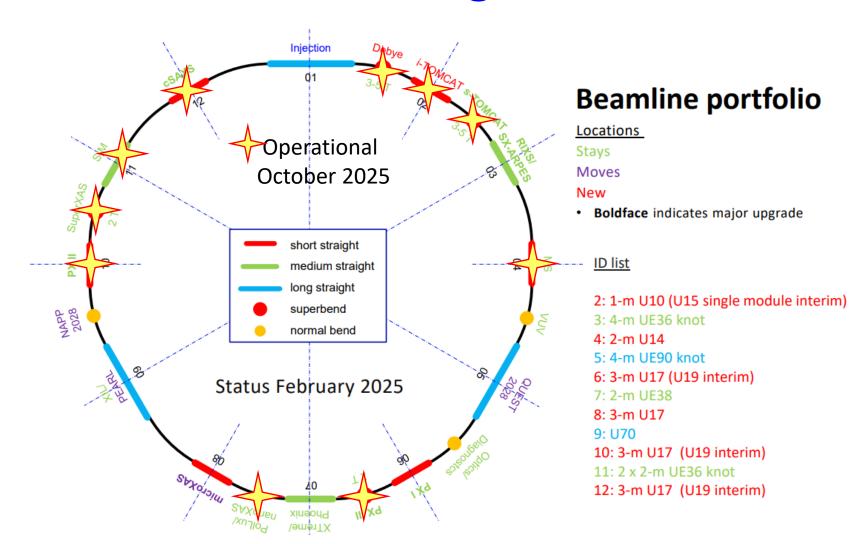
Realignment campaign (2)

• LGB in Sector 6 and Reverse bends in Sector 4, 5 and 6 were shifted, up to 500 um, to regulate the horizontal corrector current...



Status of feedbacks

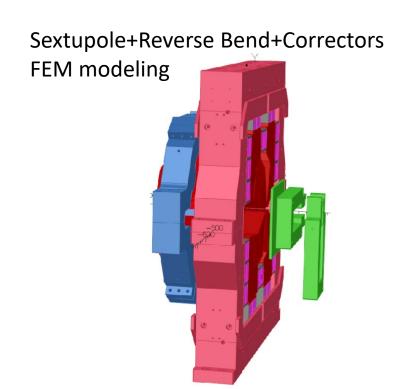
- Fast orbit feedback (postponed from Phase 5 to Phase 7)
 - Slow orbit feedback was running since Phase 4 and good enough for beamline commissioning
 - FOFB loop is currently running at 40 kHz, possibly pushed to 80 kHz if better
 - RF frequency correction is included in FOFB; Low alpha machine, α ~1e-4
- Filling pattern feedback is in-progress
- Bunch-by-bunch feedback is ready
- Tune feedback is not demanded
 - Manual tune correction from time to time


Orbit stability

All BPMs: 144/91 um in H/V

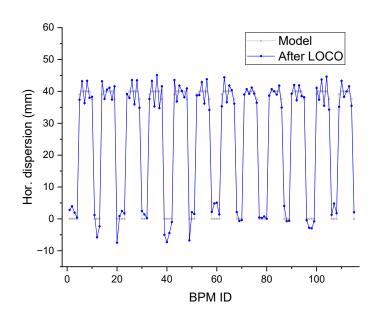
Beamline commissioning

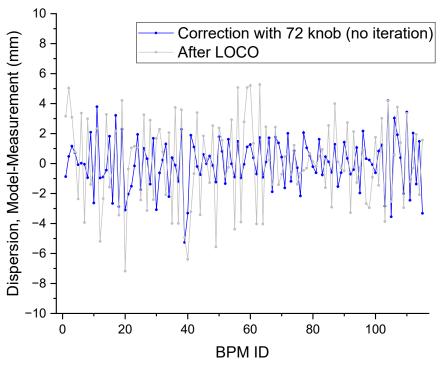
Lessons learnt (and known)


- Importance of preparation
 - Planning, hardware tests, magnet polarity check, high level applications, virtual accelerator, etc.
- Importance of beam diagnostics
 - BPM was the most important diagnostics to establish stored beam, and later for orbit correction and fast orbit feedback
 - Enhanced BLM system was useful to localize beam losses
- Excellent new devices
 - Thin septum: Injection efficiency close to 100% achieved
 - HOM damped cavity; no instability observed except for ion instabilities
- Vacuum conditioning/scrubbing
 - 100 A-hour is a good measure
 - Increased beam size gave us extra time for optics refinement; Lifetime was dominated by gas scattering when the pressure was high
- Beam lifetime longer than expected, 9 hours in design vs ~12 hours
 - Gas scattering lifetime might be underestimated with 1.0e-9 mbar CO assumed
 - · Robust beam optics with pseudo-symmetry lattice design
 - Planar undulators including CPMU14 (3.8 mm gap) had no significant impact on the lifetime. Apple type undulators to be examined.
- Compact MBA based on permanent magnet is feasible
 - Orbit and linear optics correction were fine with limited correctors (proof for crosstalk compensation) ← This was the grave concern
 - Excellent job done by magnet and alignment groups


- from beam dynamics point of view!
- No issues with large number of power supplies for matching quads + multipoles + Q/D correctors

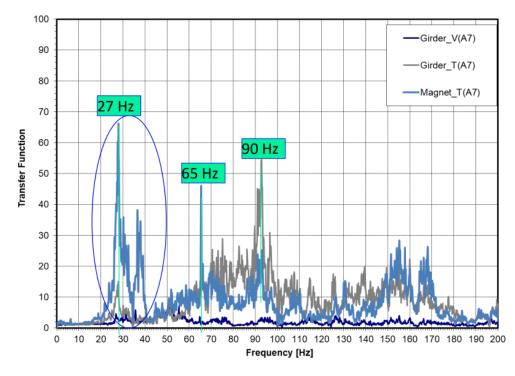
Magnetic crosstalk

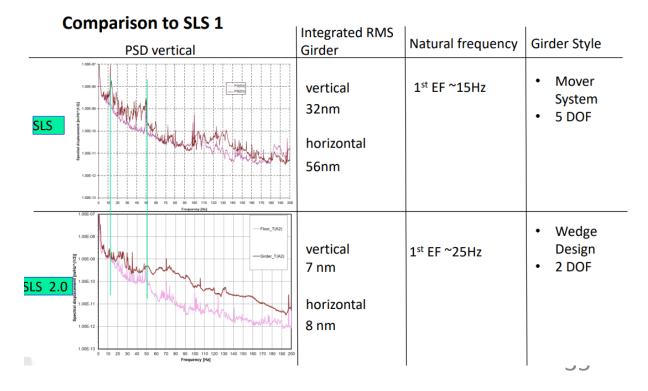

Reverse bend field attenuation 4.6%...


All permanent magnets were measured and tuned to compensate for crosstalk

Linear optics correction, Dispersion

- Dispersion was not well corrected with LOCO (not expected)
- "Dispersion knob" applied
 - One dispersion knob consists of 6 quad correctors
 - Almost transparent to beta function
 - 72 dispersion knobs applied





Girder and Ground vibration

Transfer function over frequency

- Most distinct Magnet amplification at 27Hz (Also seen in beam measurement)
- Girder Motion at 90 Hz is not amplified to the Magnets

