Low-emittance lattice for the PEP-II tunnel

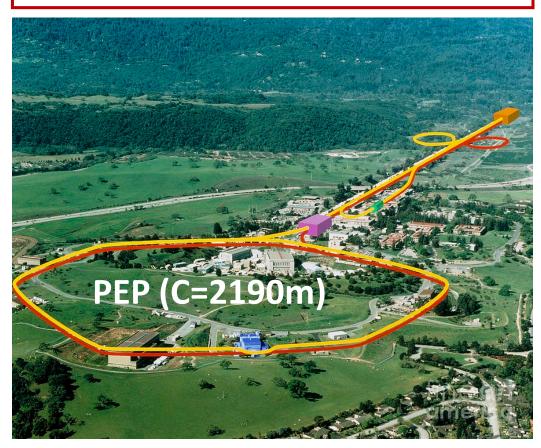
Donish Khan / **SSRL**

October 8, 2025

PEP-X @ SLAC

- The Positron-Electron Project (PEP-II) is a decommissioned (late 2000's) storage ring once used to collide beams as a part of SLAC's high-energy physics programs.
- A next generation, storage ring light source has been proposed since the late 2000's in the existing PEP tunnel to inherit SSRL's scientific program.
- Work on PEP-X since ~ 2008 :
 - Initial lattice design: DBA + TME
 - DA/MA/TL studies
 - Magnet lattice refinements
 - Insertion device compatibility
 - Injection scheme development
 - RF system design
 - Collective effects analysis

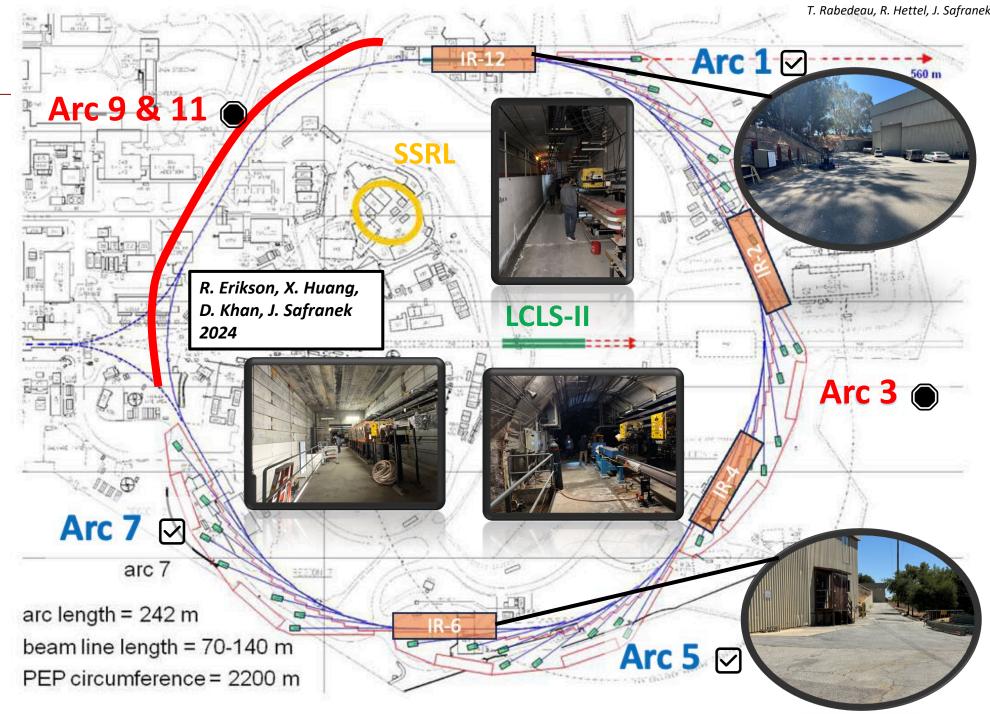
DLSR design and plans: an international overview


Journal of

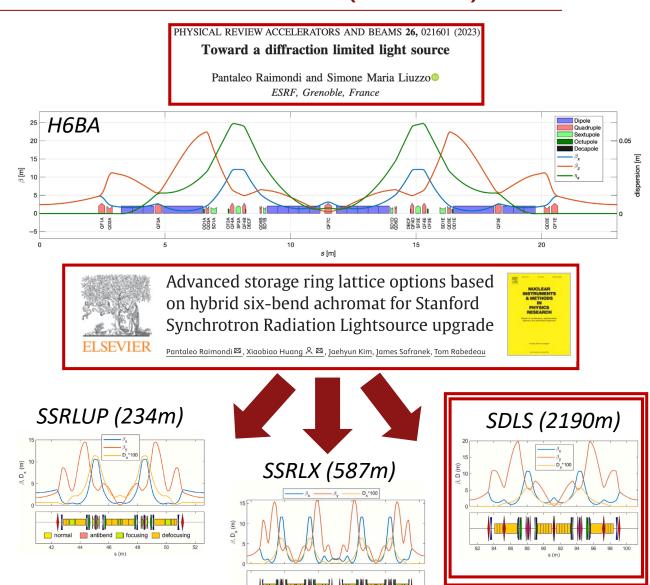
Synchrotron

Radiation

Robert Hettel

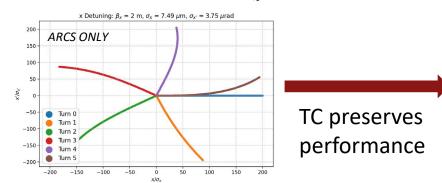

ISSN 1600-5775

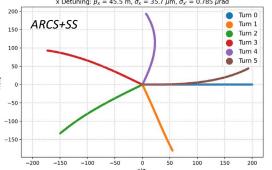
PEP-X

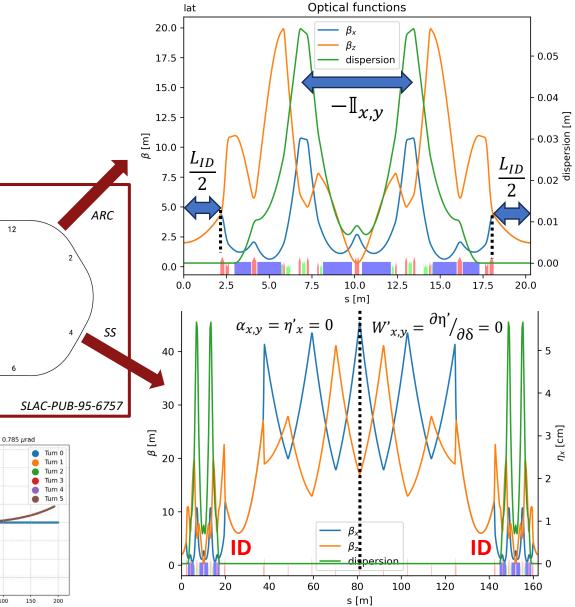

- The PEP-II ring is located underground with a large circumference of ~2.2 km.
- It's proximity to LCLS/LCLS-II affords interesting parasitic injection schemes.
- Multiple areas of research for beamlines:
 - A balance between cost (avoiding excavation) and beamline potential.
 - Standard ID beamlines.
 - Soft-arc premium beamlines.
 - Storage ring-based FEL options.

Cell Innovations: The Hybrid 6 Bend Achromat (H6BA)

- The H6BA is a cell that combines the features of the DBA and MBA while maintaining chromaticity correction:
 - Multi-bend \rightarrow lower ϵ_{χ} .
 - η bumps separated by $-\mathbb{I} \to \xi_{x,y}$ correction.
 - Weak sextupoles enhanced by η bumps.
 - Orthogonal optics knobs for nonlinear dynamics tuning.
- Recent design work (2023) by Pantaleo R. et al on the cell has open doors for PEP-X.
- The Stanford Diffraction Limited Light Source (SDLS) is the adaptation of the H6BA cell into PEP-X.
- H6BA characterized by its performance in nonlinear dynamics...

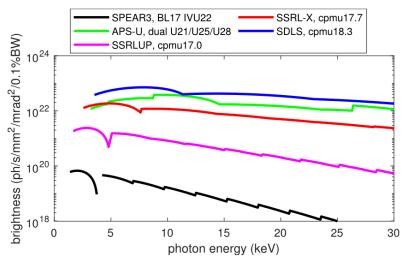





Stanford Diffraction -limited Light Source: SDLS

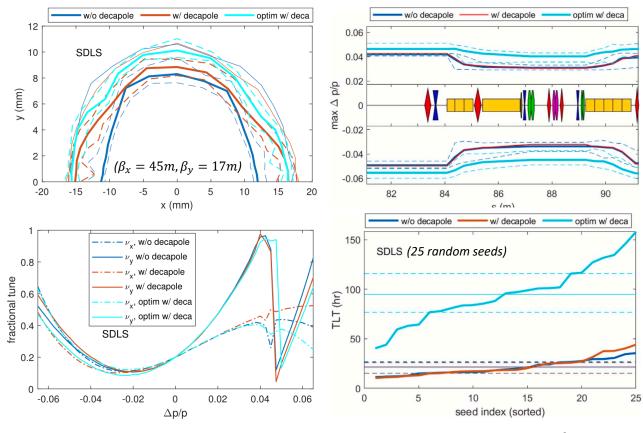
The SDLS is the adaptation of the H6BA cell into the PEP-X:

- 1. 6 Arcs (12 H6BA cells i.e. "12cell")
 - a. $-\mathbb{I}_{x,y}$ transform between dispersion bumps.
 - b. 3 families of sextupoles: 1 SF & 2 SD.
 - c. Octupole (high β_y) and Decapole for high-order nonlinearities correction.
 - d. $L_{ID} = 4.3$ m between cells for ID.
- 2. 6 Long (~120 m) Straight Sections (SS)
 - a. Two long (12 m) ID sections (left/right).
 - **b.** Transparency conditions (TC) at center of the SS:
 - On-energy: $\alpha_{x,y} = \eta'_x = 0 \& \Delta \mu_{x,y} = (2,1) \times n\pi$.

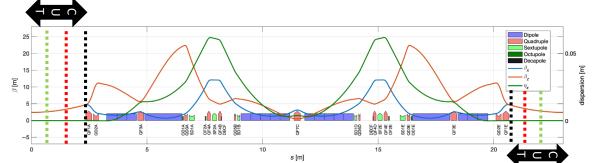


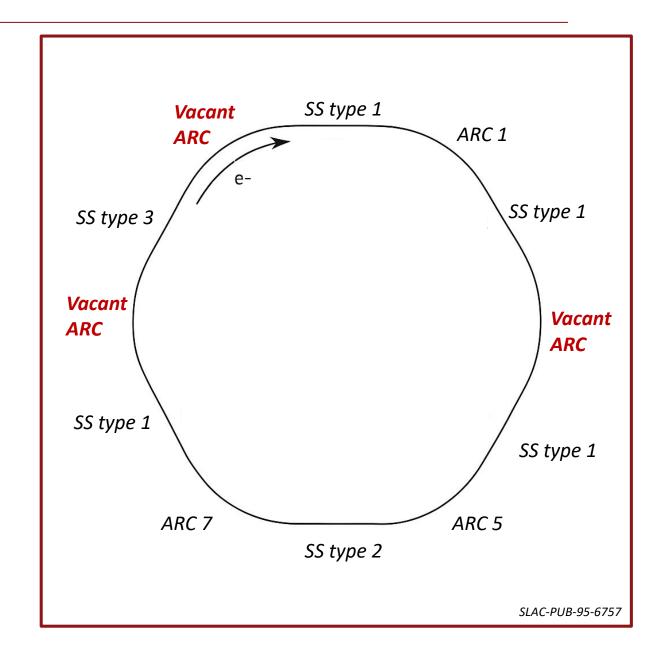
SDLS Performance Highlights

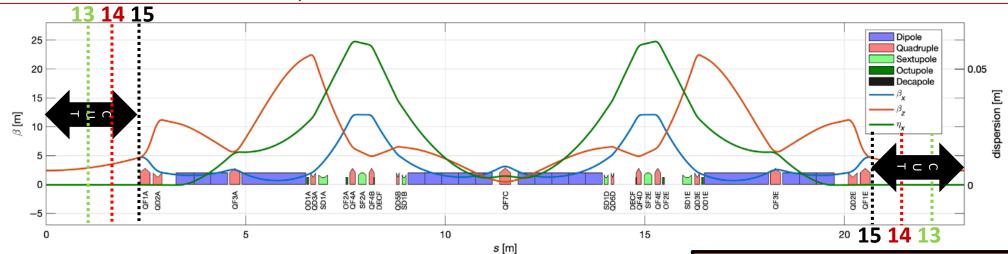
- Some performance highlights of the SDLS:
 - 1. Large DA (~12mm) enables off-axis injection.
 - 2. The Touschek lifetime (TL) is ~100 hours for a 300 mA beam current (0.1 mA/bunch).
 - 3. Diffraction limited for 10 keV photons (fully coupled electron beam with ~10pm).


Parameter	Units	Value
Energy	GeV	5.000
Tune (x, y)	2π	1.766667, 0.905556
Chromaticity (x, y)	n/a	0.240214, 0.199434
Nat. Emittance (x)	pm	28.055
σ_E/E_0	n/a	6.38016E-04
Energy Loss	keV	9.47348
α_c	n/a	3.93017E-05

Advanced storage ring lattice options based on hybrid six-bend achromat for Stanford Synchrotron Radiation Lightsource upgrade




Pantaleo Raimondi ☒ , Xiaobiao Huang 🌣 ☒ , Jaehyun Kim, James Safranek, Tom Rabedeau


Improving Upon The SDLS

- Now, the goal is to continue to push performance of the nominal SDLS design.
- Not all arcs (only 3 of 6) in the PEP ring will be used to host beamlines.
- The "vacant" arcs can be further optimized:
 - Cut/shorten ID-dedicated drift sections in cell (15, 14, 13).
 - Following the scaling law, $\epsilon_x \propto \frac{\gamma^2}{c^3}$, increase the number of cells (i.e. dipoles) to minimize ϵ_x .
 - Optimized linear optics and magnet distribution within cell.
 - Integrate vacant arc with nominal arc optics.

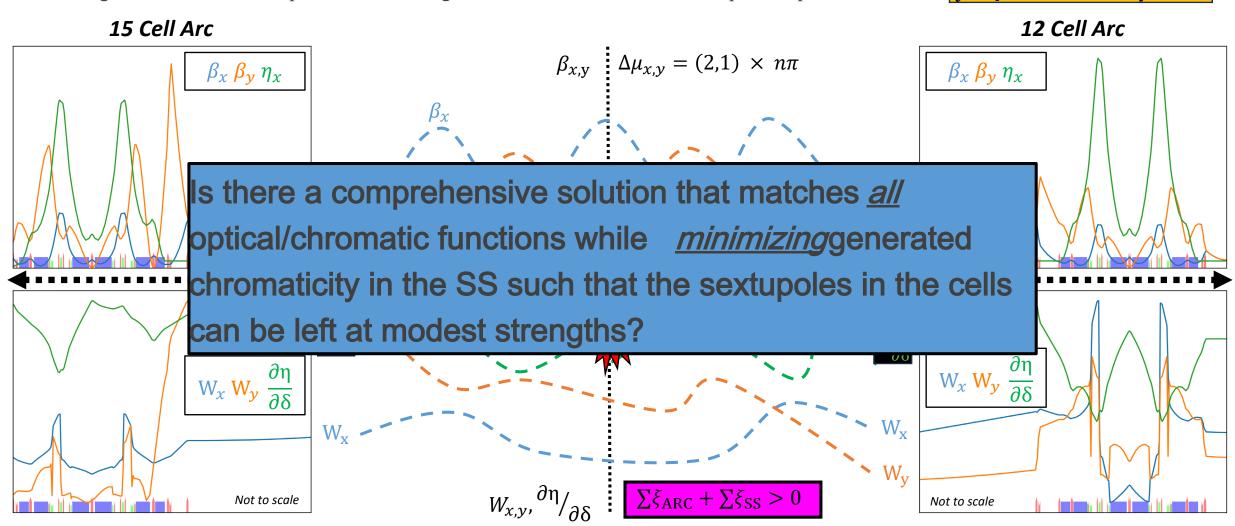
The Compact H6BA cell: "15 cell"

- 15cell design stage(s):
 - 1. Remove the ID drift(s).
 - 2. Convert end quadrupole to a half-magnet; adjacent cells share a triplet.
 - 3. Reduce emittance by a factor of $(12/15)^3 \sim 0.5$.
 - 4. Optimize linear and nonlinear optics for performance
 - 5. Dispersion suppressor
 - 6. Match into SS's:
 - a. SS type 1:12cell-to-15cell
 - b. SS type 2:12cell-to-12cell
 - c. SS type 3:15cell-to-15cell

Parameter	Units	Value
Energy	GeV	5.000
Tune (x, y)	2π	1.591111, 0.613333
Chromaticity (x, y)	n/a	0.180076, 0.149954
Nat. Emittance (x)	pm	13.728
σ_E/E_0	n/a	5.65784E-04
Energy Loss	keV	6.0630299999999995
α_c	n/a	3.10415E-05

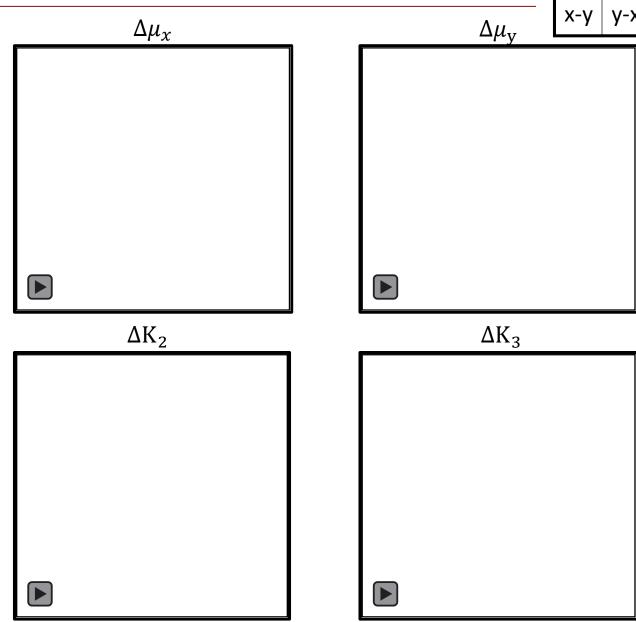
Various Challenges:

- 1. Matching linear optics along with chromatic functions $(W_{x,y}, \frac{\partial \eta}{\partial \delta})!$
- 2. Preserving nonlinear dynamics performance of 12cell.


Non-achromatic

cell!

15 Cell Challenges: Linear/Chromatic Optics Matching

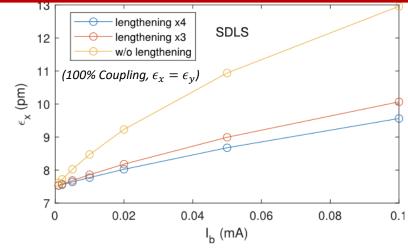

- There is a break in periodicity between the 12cell & 15cell arcs each having different intrinsic optical/chromatic functions.
- Straight sections need to provide matching of all terms each with its own phase space invariant, $J_i = \gamma i^2 + 2\alpha i i' + \beta i'^2$:

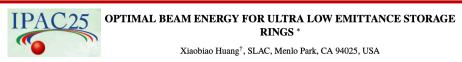
15 Cell Challenges: Nonlinear Dynamics Performance

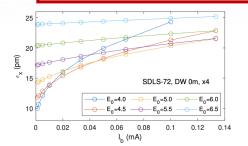
x y x-y y-x

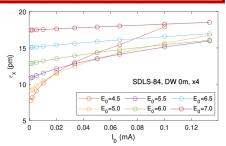
- Nonlinear dynamics optimization is computationally expensive task.
- Strong linear optics optimization as a 1st step could get close to an optimal solution subsequently found with Multi Objective Genetic Algorithm (MOGA) like numerical optimizations.
- "Starfish" plots are a relatively fast-proxy for tuneshift with amplitude nonlinear dynamics.
 - a. Use H6BA optics knobs: $\Delta \mu_{x,y}$ between SF's, Sextupole (K_2) , Octupole (K_3) .
 - b. Optimize starfish for "anharmonicity"i.e. straight lines for each arm of starfish i.e. after N-turns $\vec{x}_0 = \vec{x}_N$.

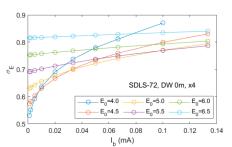
Beam Energy & IBS Studies

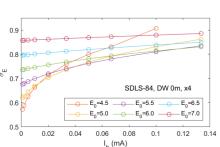

- Reducing γ reduces the lattice ϵ_x via $\epsilon_x \propto \frac{\gamma^2}{c^3}$ scaling law.
- Reduction in γ not only affects photon energy range but exacerbates ϵ_x dilution via intra-beam scattering (IBS).
- IBS's affect on ϵ_x could nullify the compact H6BA cell ("15cell") optimization efforts.
- IBS scales **strongly** with γ : IBS Growth Rate $(1/\Gamma_{\rm X}) \propto E^{-11.5}$ for a scaled lattice(s) \rightarrow IPAC17 POTENTIAL PERFORMANCE LIMIT OF STORAGE RINGS Xiaobiao Huang[†], SLAC, Menlo Park, CA 94025, USA
- Increases of γ helps IBS but hurts ϵ_{χ} .
- Choice of beam energy plays a big role in machine performance.




Advanced storage ring lattice options based on hybrid six-bend achromat for Stanford Synchrotron Radiation Lightsource upgrade




Pantaleo Raimondi 🖾 , Xiaobiao Huang 💍 🖾 , Jaehyun Kim, James Safranek, Tom Rabedeau



Future Steps

- 1. Beamline layout and accelerator orientation (clock-wise vs. counter clock-wise)
 - a) Minimize cost & maximize flexibility
- 2. Research injection options
 - a) Electron source: LCLS? Dedicated e-Gun/linac?
- 3. Comprehensive lattice and beam dynamics studies (elegant, Bmad, AT):
 - a. Push for lower emittance higher gradients, shorter magnets, more cells.
 - b. Lattice & nonlinear dynamics design/optimization.
 - c. Insertion device performance/impact studies.
 - d. Collective effects and long-term stability.
- 4. Monochromator-less beamlines
- 5. Study ring-based FEL options
- 6. Investigate timing mode options (crab cavities, single bunch limits)

