
Lattice design towards 1 
pm emittance

Yu Zhao
IHEP

I.FAST Low Emittance Rings Workshop 2025
Hamburg  Germany

9 October 2025



 Emittance of the fourth generation light source
 Brightness and coherence of the pm-level latttice design
 Approach for achieving 1 pm-level emittance
 New lattice concept

• Linear optics design
• Nonlinear optimization 
• Combined HOA and -I cancellation

 Challenges
 Summary
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3GLS 4GLS

2~3 order  reduction

The fourth generation light source(4GLS)
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3GLS

4GlS

compact MBA lattice

1~2 order  increase

Raimondi, P.,  2023.  Commun Phys 6, 82. 



4GLSs Wordwide
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HALF，2028

ELETTRA

T. Shaftan,IPAC24

SLS 2.0



Hard X-ray diffraction-limited emittance?
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10 pm ∙rad level

1 pm ∙rad level

λ = 0.1 nm, εr = 8  pm·rad

λ =    1 nm, εr = 80 pm·rad

diffradtion-limited emittance for hard X ray not reached!

Two important figures of merit for 
the storage ring:

Brightness:

Coherence:



Emittance、Brightness and Coherence
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200 mA

400~450 mA

• Settings:  undulator length = 5 m, β function at LSS is 5 m and 3 m , energy spread is 1.1×10-3 

fcoh = 0.25

10pm 
level

1pm 
level

E=6 GeV(@20 keV ) E=3.5 GeV@ 4 keV

 Brightness Gains :  significant numerical gain

 Coherence Gains:  

soft X-ray:  a nearly order-of-magnitude increase                 Hard X-ray: several-fold increase in coherence (~1) 

Further reduction of emittance to ~1 pm is required!



 further increase the number of dipoles (the most effective solution )

Approaches for achieving 1 pm-level emittance
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MAX-IV:  528m, 7BA-> 19 BA,  250 pm -> 16 pm

NSLS-II-U:  complex bend, 792m, 3GeV,  20 pm

P. F. Tavares, NIMA,224,  2018;  

M.H. Song and T. shaftan, PRAB 27, 2024; 

PETRA-IV:  H-6BA+damping wiggler, 42 pm -> 20 pm 

R. Bartolini, LER2024



 further increase the number of bends

 stronger focusing— higer gradient quadrupole

Approaches for achieving 1 pm-level emittance
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Hard-edge model is considered in this presentation!



 further increase the number of dipoles

 strong focusing

 combined function dipoles(LGB/RB etc.)

 mitigate collective effects with adequate beam current

 long LSS for IDs

 reasonable circumference

Approaches for achieving 1 pm-level emittance

scale HEPS lattice to about 1 pm level (eg. 3~4 pm), 
the circumference will increase to about 2000 m；

however, increased impedence will influence the 
current threshold, finally influence brightness

Realize 1 pm emittance through a compact 
reasonably-sized design.



A new compact reasonably-sized lattice concept
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 Remove one dispersion bump in the hybrid MBA to free up space for additional 
bending magnets (named single hybrid MBA lattice, SH-MBA)

taking HEPS lattice as an example, from H-7BA to SH-10BA, E = 6 GeV, C = 1360.4 m,  34 pm-> 15 pm



Storage Ring

Full Energy Linac

Based on SAPS parameter, to achieve 1 pm emittance
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 Medium- and low-energy rings face greater IBS challenges, limiting emittance reduction.

 The 1 pm design will be based on a medium-energy source. 

 Southern Advanced Photon Source (SAPS)：

• planned to built adjacent to CSNS in GuangDong, China

• plan to apply for the "16th Five-Year Plan" of the country(2031-2035 )

• before receiving the funding, the design can still be further adjusted 
and optimized.

Main parameters Unit Value
Beam energy GeV 3.5

Natural emittance pm∙rad ≤ 60

Brightness phs/s/mm2/mrad2/0.1%BW > 1022

Beam current mA ≥ 400

Circumference m <1000
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Linear optics design

 SH-16BA, ~150 T/m (magnet diameter = 22 mm), 36 periods, 945 m 

• 6 reverse-bends are added in each SH-16BA 

φx = 9π,  φy = 5π

• phase advance between the sextupoles adjacent two dispersion bumps are configured for -I cancellation. 
• two standard periods are merged to form a single superperiod.  

symmetry
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 SH-16BA, ~150 T/m (magnet diameter = 22 mm), 36 periods, 945 m 

• phase advance between sextupoles and periods can not be the same.  

φx = 9π,  φy = 5π

• the superperiod incorporates two long straights of different lengths (6 m & 4 m). 

4 m 6 m

Linear optics design

achromat design achromat design
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 SH-16BA, ~150 T/m (magnet diameter = 22 mm), 36 periods, 945 m 

Linear optics design

M. Gehlot, IPAC23, WEPM100 

• longitudinal gradient bend with horzontally defocusing gradient (B/G~ 22 mm) 
• the segments of LGB are different from the typical LGB, which to further increase the height of the 

dispersion bump



Bare lattice parameters
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Parameters Value Unit

Energy 3.5 GeV

Circumference 945 m

Natural emittance 5.568 pm·rad

Damping partitions 2.52/1/0.48

Ring tunes 165.383 /94.365

Natural chromatities -279.51/-343.1

Momentum compaction factor(αc) 1.53×10-5

Energy spread 1.1×10-3

Energy loss per turn 0.4 MeV

Damping time（x/y/z） 21.8/55/115.4 ms

LSS length 6/4 m

βx and βy at LSS center 4.88/3.23   2.28/1 m

daming wiggler are 
required to further 
reduce emittance 
and damping time

lower αc is more sensitive 
to  collective effect 



 Beam emittance blow-up due to the medium energy and low natural emittance

 Considering the RF frequency is 166.6 MHz, and 90% filling mode, with the beam current 
of 100 mA ( 0.67 nC per bunch)

 round-beam mode, coupling = 1
 bunch length is strectched with the ideal condition(4.4 mm -> 26.4 mm)
 IBS emittance is 6.482/6.482 pm·rad
 energy spread increases to 1.4×10-3

 if beam current is 200 mA, 1.33 nC per bunch
 with the same condition, the ibs emittance will blow up to 8/8 pm·rad
 energy spread increases to 1.52 ×10-3

 with damping wiggler, final emittance could be smaller

Mitigation of intra-beam scattering effect
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SF2SD3 SD4OD3 OD4 OD4 OD3

SF1SD1 SD2OD1 OD2 OD2 OD1

Nonlinear optics
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 MOPSO and MOGA are used to optimize nonlinear acceptance

 super-period: 4 sextupoles and 4 octupoles are free variables

 two sextupoles are used to correct chromaticity to postive

• While dispersion bumps help reduce sextupole strength, their effectiveness diminishes at pm-level 
emittances.
• At such low emittances, the required sextupole strength still exceeds practical limits.
• Simply increasing sextupole length is not feasible, as it would result in them being longer than the 
quadrupoles.



Nonlinear Driving Terms: 3 Orders of Magnitude Above 
Standard 4G Sources
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SAPS  lattice 1pm level lattice

ADTS

dnux/dJx 3.1393e+04 1.1242e+07

dnux/dJy -1.6187e+04 -1.1996e+06

dnuy/dJy 5.5187e+03 -7.8822e+06

second order chromoaticy 
terms（bare lattice）

horizontal 251.7971 -6.6987e+04

vertical 19.7496 -4.4198e+04

second order chromoaticy 
terms（with sextupoles 

and octupoles）

horizontal 0.9799 -1.6474e+03 

vertical 1.7449 -2.0751e+03

• compared with SAPS lattice (bare lattice emittance is 26.3 pm·rad), 

nonlienar driving terms significantly increase



Dynamic aperture and momentum aperture
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 DA is nearly 1 mm, and MA is so small, about 1% (w.o. errors)



Nonlinear optics optimization (HOA and -I cancellation) 
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 H-MBA with -I Cancellation
• Pro: Excellent cancellation of geometric resonance driving terms.

• Con: Large chromatic terms lead to a small MA.

 Standard MBA with HOA Cancellation
• Pro: Lower chromatic terms and a reasonable MA.

• Con: Results in a smaller DA.

-I cancellation
HOA:  7×(2/7, 1/7)×2π HOA:  7×(2/7, 1/7)×2π

BD+SD QF+SFQF+SF



21-I cancellation
HOA:  7×(2/7, 1/7)×2π HOA:  7×(2/7, 1/7)×2π

BD+SD QF+SFQF+SF

• Unexpected Result: 
The combined approach did not 

yield better nonlinear acceptance. 
Instead, it highlighted the 
weaknesses of each method in 
canceling nonlinear terms.

Nonlinear optics optimization (HOA and -I cancellation) 
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Challenges 

larger chromaticity



 Our novel concept successfully pushes emittance to the pm-level in a compact ring, 
meeting hard X-ray requirements under IBS.

 This comes at the cost of intense nonlinearities. Current combinations of two  
cancellation techniques (HOA & -I) are inadequate, failing to improve performance.

 Breaking this nonlinearity barrier demands the exploration of entirely new 
suppression methods.

 Further optimization and exploration are still under way and never ends.

Summary
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Thank you for your attention！
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