

Numerical Optimization Strategies for **Optics Matching**

Bernardo Abreu Figueiredo^{1,2}

Acknowledgements: L. Deniau¹, J. Gray^{1, 3}, G. ladarola¹, S. Łopaciuk¹, R. de Maria¹

¹ CERN, Geneva, Switzerland

² RWTH Aachen University, Germany

Nikhef National Institute for subatomic physics, Amsterdam, Netherlands

Introduction

Matching Capabilities in Xsuite

Performance Improvements

Results

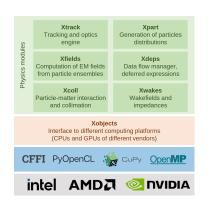
Conclusion

Introduction

- Control beam optics in modern accelerators
 - Twiss parameters, tunes, dispersions, chromaticities
- Closed analytical form not feasible
- Instead: Find solution numerically
- Continuous process, performance becomes limiting factor

Xsuite ¹

- Beam dynamics simulation toolkit
- Written in Python, some parts C++ and CUDA



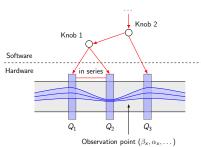
- Includes matching routines, e.g. for optics
- More info: https://xsuite.web.cern.ch

¹More information in S. Łopaciuk's talk about Xsuite developments

Subpackages

- Xtrack
 - Physical modeling of accelerator components
 - Tracking particle simulations
- Xdeps
 - Modeling accelerator by control system
 - Knobs that control magnet circuits
 - Software representation of dependencies
- Other packages for other use cases (Xobjects, Xpart, ...)

Control System



- Blue modeled by Xtrack, red by Xdeps
- Simple beamline definition in code

Matching Capabilities in Xsuite

Optics Matching

- Defined as continuous box-constrained optimization problems
- Varying parameter and target dimensions
 - Commonly more than 20 parameters and targets
- Minimize penalty function f w.r.t. desired targets \vec{t}
- Knobs are parameters of optimization problem

How to Define it?

- Match tunes for quadrupole strengths
 - 2 Variables, 2 Targets

```
opt = line.match(solve=False,
 vary=xt.VaryList(['knl f', 'knl d'], step=1e-3),
 targets=[xt.TargetSet(qx=.18, qy=.16)])
```

- Solve optimization: opt.solve()
- Get merit function: opt.get_merit_function()
 - Usable for custom optimizers
 - Can provide jacobian with get_jacobian()

Implemented Algorithms

Supports following algorithms

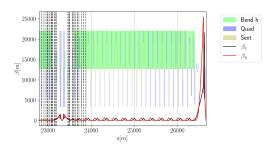
Method	Dimension	Use in Xsuite
Jacobian ² (default)	vectorial	${\tt opt.run_jacobian()}$
Trust region reflective ³	vectorial	opt.run_ls_trf()
Dogbox ³	vectorial	opt.run_ls_dogbox()
L-BFGS-B ³	scalar	opt.run_l_bfgs_b()
BFGS ³	scalar	opt.run_bfgs()
Nelder-Mead ³	scalar	opt.run_nelder_mead()
DiRECT ³	scalar	opt.run_direct()

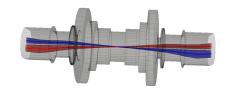
²Developed inhouse

³Implemented in SciPy

Case Study: LHC Optics Matching

- Reach $\beta_x = 0.15 m$, $\beta_y = 0.1 m$ at collision point
- Find good strengths k_1 for 30 quadrupoles within 4 km around IP1
- 2146 elements from starting point to IP1





How to define the Optimization Problem

```
opt = line.match(
default tol={None: 1e-8. 'betx': 1e-6. 'betv': 1e-6. 'alfx': 1e-6. 'alfv': 1e-6}.
start='s.ds.l8.b1', end='ip1',
init=tw0, init at=xt.START,
varv=[
    xt.VaryList(['kq6.l8b1', 'kq7.l8b1', 'kq8.l8b1', 'kq9.l8b1', 'kq10.l8b1',
         'kqtl11.l8b1', 'kqt12.l8b1', 'kqt13.l8b1',
         'kq4.l8b1', 'kq5.l8b1', 'kq4.r8b1', 'kq5.r8b1',
         'kq6.r8b1', 'kq7.r8b1', 'kq8.r8b1', 'kq9.r8b1',
         'ka10.r8b1', 'katl11.r8b1', 'kat12.r8b1', 'kat13.r8b1'])].
 targets=[
    xt.TargetSet(at='ip8', tars=('betx', 'bety', 'alfx', 'alfy', 'dx', 'dpx'), value=tw0),
    xt.TargetSet(at='ip1', betx=0.15, bety=0.1, alfx=0, alfy=0, dx=0, dpx=0).
    xt.TargetRelPhaseAdvance('mux', value = tw0['mux', 'ip1.l1'] - tw0['mux', 's.ds.l8.b1'],
                              start = 's.ds.l8.b1', end = 'ip1.l1'),
    xt.TargetRelPhaseAdvance('muy', value = tw0['muy', 'ip1.l1'] - tw0['muy', 's.ds.l8.b1'],
                              start = 's.ds.l8.b1', end = 'ip1.l1'),
```

Defines tolerances, start/end point, initial conditions, 20 knobs and 14 targets

Initial Status Case Study

Method	Runtime	No. Calls	No. Iterations
Jacobian	$2.9s\pm0.1s$	117	6

Can we do better?

Initial Status

Method	Runtime	No. Calls	No. Iterations
Jacobian	$2.9 ext{s} \pm 0.1 ext{s}$	117	6

Can we do better?

- Fairly speaking, this is already quite good
- Iterative process that has to be repeated many times

Other Algorithms?

- Scalar algorithms (L-BFGS-B, BFGS, Nelder-Mead) did not converge for this case
- Vectorial algorithms converge (TRF, Dogbox) but slower

Method	Runtime	No. Calls	No. Iterations
JACOBIAN	$2.9 extstyle \pm 0.1 extstyle s$	117	6
TRF	15s \pm 1s	463-597	20-25
Dogbox	$7.8 \mathrm{s} \pm 0.16 \mathrm{s}$	265	12-15
L-BFGS-B	no convergence	17450	1200
BFGS	no convergence	2690	600
Nelder-Mead	no convergence	≈ 5000	10000

JACOBIAN Algorithm 4

- Main algorithm used for matching in Xsuite, based on Newton-Raphson
- Calculate Jacobian J, e.g. with finite differences
- Step $\vec{p} = J^+ \vec{y}$
 - ullet J^+ is the pseudo-inverse of jacobian J obtained through SVD
 - \vec{y} is the weighted error vector
- Set $\alpha = -1$, evaluate $f(\vec{x} 2^{-\alpha}\vec{p})$ until error reduces while incrementing α

⁴ R. De Maria, F. Schmidt, and P. K. Skowronski, "Advances in matching with MAD-X." in Proc. ICAP'06, Chamonix, Switzerland, Oct. 2006, pp. 213–215.

Challenges

- JACOBIAN algorithm is robust local optimizer, works if starting point is "close" to solution.
- Designing optics is an iterative process \rightarrow smaller runtime has stronger impact
- Bottleneck: Calculating Jacobian matrix (one twiss call per variable)

Total Twiss calls	Twiss calls for Jacobian
117	100

Focus on improving derivative computation!

Performance Improvements

Broyden's Method ⁵

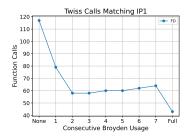
- Broyden's method to approximate Jacobian matrix
 - Compute

$$J_{n+1} = J_n + \frac{(\Delta \vec{y_n} - J_n \Delta \vec{x_n}) \Delta \vec{x_n}^{\top}}{\Delta \vec{x_n}^{\top} \Delta \vec{x_n}}$$

• $\Delta \vec{x}_n = \vec{x}_n - \vec{x}_{n-1},$ $\Delta \vec{y}_n = \vec{y}_n - \vec{y}_{n-1}$

 $\Delta y_n = y_n - y_{n-1}$

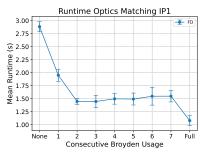
 Finite differences for derivatives

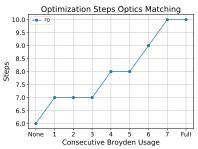


- Simple calculation → improves performance
- Works if Jacobian's are similar between iterations

⁵ Broyden, C. G. (1965). "A Class of Methods for Solving Nonlinear Simultaneous Equations". Mathematics of Computation. 19 (92). American Mathematical Society: 577–593.

Broyden Results





Method	Runtime	No. Calls	No. Iterations
JACOBIAN (no Broyden)	$2.9 \mathrm{s} \pm 0.1 \mathrm{s}$	117	6
JACOBIAN (only Broyden)	$1.08s \pm 0.05s$	43	10

Better runtime, but more optimization steps!

Automatic Differentiation

- Use automatic differentiation (AD) to calculate Jacobian instead of finite differences (FD)
- AD in beam dynamics successfully demonstrated with Cheetah ⁶ in tracking
- This approach uses linear optics to calculate quantities
- Reduces use of evaluation function

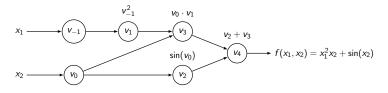
⁶O. Stein, J. Kaiser, A. Eichler - "Accelerating Linear Beam Dynamics Simulations for Machine Learning Applications" in Proceedings of the 13th International Particle Accelerator Conference, 2022

Automatic Differentiation

- From a transfer map $R \in \mathbb{R}^{6 imes 6}$, subsequent optics can be calculated
- e.g. $\beta_{x2} = \frac{1}{\beta_{x1}} ((R_{11}(k_{Q_1}, \dots) \beta_{x1} R_{12}(k_{Q_1}, \dots) \alpha_{x1})^2 + R_{12}(k_{Q_1}, \dots)^2)$
- · Chaining possible to calculate optics from start to end

JAX

- ML/Al hype boosted efforts in tools for fast differentiation
- JAX⁷ is a library to calculate derivatives via AD, developed by Google
- Creates computational graph and uses chain rule



⁷Min Lin. "Automatic Functional Differentiation in JAX". In: International Conference on Representation Learning. Ed. by B. Kim et al. Vol. 2024.

Automatic Differentiation

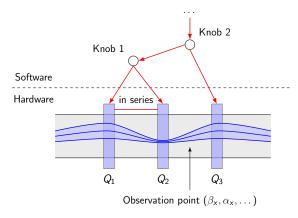
- Use JAX to create computational graph of transfer maps
- Advantages:
 - Sequence and matrices don't change
 - ullet Can be JIT-compiled o increases performance
- Yields derivatives of optics parameters with respect to physical quadrupoles

Not the Full Story...

- AD yields e.g. $\frac{\partial \beta_x}{\partial k_1}$, but we need $\frac{\partial \beta_x}{\partial k nob_1}$!
- Through chain rule, it is $\frac{\partial \beta_x}{\partial k n o b_n} = \frac{\partial \beta_x}{\partial k_1} \frac{\partial k_1}{\partial k n o b_1} \dots \frac{\partial k n o b_i}{\partial k n o b_n}$
- To obtain these, one has to traverse the control system hierarchy

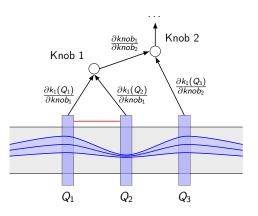
Differentiating Control System Model

$$\tfrac{\partial \beta_{\mathsf{x}}}{\partial \mathsf{knob}_{\mathsf{n}}} = \tfrac{\partial \beta_{\mathsf{x}}}{\partial k_1} \tfrac{\partial k_1}{\partial \mathsf{knob}_1} \dots \tfrac{\partial \mathsf{knob}_i}{\partial \mathsf{knob}_{\mathsf{n}}}$$



Differentiating Control System Model

$$\frac{\partial \beta_x}{\partial k nob_n} = \frac{\partial \beta_x}{\partial k_1} \frac{\partial k_1}{\partial k nob_1} \dots \frac{\partial k nob_i}{\partial k nob_n}$$



Differentiating Control System Model

- Traverse the graph for each knob to find affected quadrupoles
- Symbolically differentiate the expressions affiliated to the knobs
- SymPy ⁸ used for symbolic differentiation
- Advantages:
 - Expressions are small, so JIT would cause more overhead
 - Only needed once (except if lattice/knobs change)

⁸Aaron Meurer et al. "SymPy: symbolic computing in Python". In: PeerJ Computer Science 3. 2017

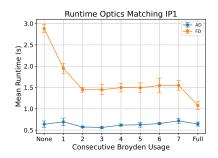
Results

Benchmark Setup

- Benchmarked on IP1 optics matching example
- Executed on Ubuntu machine with Intel(R) CoreTM i7-14700T
- Two configurations
 - Xsuite with Finite Differences (default)
 - Xsuite with Automatic Differentiation
- Analyze for different frequency of Broyden use
- 10 runs

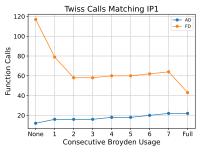
Results Runtime

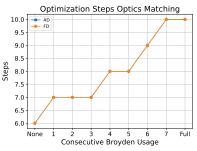
- AD substantially faster than FD approach
- Broyden increases performance for FD, not notable for AD
 - Increases number of iterations, thus also number of calls



Method	Runtime	No. Calls	No. Iterations
FD (no Broyden)	$2.9 extstyle \pm 0.1 extstyle s$	117	6
FD (only Broyden)	$1.08 ext{s}\pm0.05 ext{s}$	43	10
AD (no Broyden)	$0.63\mathrm{s}\pm0.08\mathrm{s}$	12	6
AD (only Broyden)	$0.64s\pm0.05s$	22	10

Broyden vs. Optimization Steps





Method	Runtime	No. Calls	No. Iterations
FD (no Broyden)	$2.9 ext{s} \pm 0.1 ext{s}$	117	6
FD (only Broyden)	$1.08 ext{s}\pm0.05 ext{s}$	43	10
AD (no Broyden)	$0.63\mathrm{s}\pm0.08\mathrm{s}$	12	6
AD (only Broyden)	$0.64 \text{s} \pm 0.05 \text{s}$	22	10

Conclusion

Conclusion

- Two main ways explored to improve optimization performance
- Fast way: Broyden's method
 - Simple implementation and integration
 - Flexible, can be used for different problem definitions
- Limited, but faster way: Automatic Differentiation
 - Very fast calculation
 - Limited to optics calculation, for now

Outlook

- Limitations of AD
 - So far only works for optical functions
 - Only for quadrupole strengths as variables
 - Matching Chromaticities requires further effort
- Full nonlinear dynamics with AD is developed in MAD-NG⁹, developed inhouse
 - Improve its integration with Xsuite, especially for fast Jacobian computation
 - Compare performance to JAX

⁹L. Deniau, "MAD-NG, a standalone multiplatform tool for linear and non-linear optics design and optimisation", 2025, arXiv:2412.16006

