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Introduction

• Control beam optics in modern accelerators
• Twiss parameters, tunes, dispersions, chromaticities

• Closed analytical form not feasible

• Instead: Find solution numerically

• Continuous process, performance becomes limiting factor
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Xsuite 1

• Beam dynamics
simulation toolkit

• Written in Python, some
parts C++ and CUDA

• Includes matching routines, e.g. for optics

• More info: https://xsuite.web.cern.ch

1More information in S.  Lopaciuk’s talk about Xsuite developments
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Subpackages

• Xtrack
• Physical modeling of accelerator components
• Tracking particle simulations

• Xdeps
• Modeling accelerator by control system
• Knobs that control magnet circuits
• Software representation of dependencies

• Other packages for other use cases (Xobjects, Xpart, . . . )
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Control System

Q1 Q2 Q3

in seriesHardware

Software

Knob 1

Knob 2

. . .

Observation point (βx , αx , . . . )

• Blue modeled by Xtrack, red by Xdeps

• Simple beamline definition in code
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Matching Capabilities in Xsuite
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Optics Matching

• Defined as continuous box-constrained optimization
problems

• Varying parameter and target dimensions
• Commonly more than 20 parameters and targets

• Minimize penalty function f w.r.t. desired targets t⃗
• Knobs are parameters of optimization problem
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How to Define it?

• Match tunes for quadrupole strengths
• 2 Variables, 2 Targets

• Solve optimization: opt.solve()
• Get merit function: opt.get merit function()

• Usable for custom optimizers
• Can provide jacobian with get jacobian()
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Implemented Algorithms

• Supports following algorithms

Method Dimension Use in Xsuite

Jacobian 2 (default) vectorial opt.run jacobian()

Trust region reflective 3 vectorial opt.run ls trf()

Dogbox 3 vectorial opt.run ls dogbox()

L-BFGS-B 3 scalar opt.run l bfgs b()

BFGS 3 scalar opt.run bfgs()

Nelder-Mead 3 scalar opt.run nelder mead()

DiRECT 3 scalar opt.run direct()

2Developed inhouse
3Implemented in SciPy
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Case Study: LHC Optics Matching
• Reach
βx = 0.15m,
βy = 0.1m at
collision point

• Find good
strengths k1 for
30 quadrupoles
within 4 km
around IP1

• 2146 elements from
starting point to IP1
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How to define the Optimization
Problem

• Defines tolerances, start/end point, initial conditions, 20
knobs and 14 targets
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Initial Status Case Study

Method Runtime No. Calls No. Iterations

Jacobian 2.9s ± 0.1s 117 6

Can we do better?
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Initial Status

Method Runtime No. Calls No. Iterations

Jacobian 2.9s ± 0.1s 117 6

Can we do better?

• Fairly speaking, this is already quite good

• Iterative process that has to be repeated many times
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Other Algorithms?
• Scalar algorithms (L-BFGS-B, BFGS, Nelder-Mead) did
not converge for this case

• Vectorial algorithms converge (TRF, Dogbox) but slower

Method Runtime No. Calls No. Iterations

JACOBIAN 2.9s ± 0.1s 117 6

TRF 15s ± 1s 463-597 20-25

Dogbox 7.8s ± 0.16s 265 12-15

L-BFGS-B no convergence 17450 1200

BFGS no convergence 2690 600

Nelder-Mead no convergence ≈ 5000 10000
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JACOBIAN Algorithm 4

• Main algorithm used for matching in Xsuite, based on
Newton-Raphson

• Calculate Jacobian J , e.g. with finite differences
• Step p⃗ = J+y⃗

• J+ is the pseudo-inverse of jacobian J obtained through SVD
• y⃗ is the weighted error vector

• Set α = −1, evaluate f (x⃗ − 2−αp⃗) until error reduces
while incrementing α

4 R. De Maria, F. Schmidt, and P. K. Skowronski, “Advances in matching
with MAD-X.” in Proc. ICAP’06, Chamonix, Switzerland, Oct. 2006, pp.
213–215.
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Challenges

• JACOBIAN algorithm is robust local optimizer, works if
starting point is “close” to solution.

• Designing optics is an iterative process → smaller runtime
has stronger impact

• Bottleneck: Calculating Jacobian matrix (one twiss call
per variable)

Total Twiss calls Twiss calls for Jacobian
117 100

Focus on improving derivative computation!
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Performance Improvements
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Broyden’s Method 5

• Broyden’s method to
approximate Jacobian matrix

• Compute

Jn+1 = Jn +
(∆y⃗n−Jn∆x⃗n)∆x⃗⊤

n

∆x⃗⊤
n ∆x⃗n

• ∆x⃗n = x⃗n − x⃗n−1,
∆y⃗n = y⃗n − y⃗n−1

• Finite differences for
derivatives

None 1 2 3 4 5 6 7 Full
Consecutive Broyden Usage
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• Simple calculation → improves performance

• Works if Jacobian’s are similar between iterations

5 Broyden, C. G. (1965). ”A Class of Methods for Solving Nonlinear
Simultaneous Equations”. Mathematics of Computation. 19 (92). American
Mathematical Society: 577–593.
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Broyden Results
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Optimization Steps Optics Matching
FD

Method Runtime No. Calls No. Iterations
JACOBIAN (no Broyden) 2.9s ± 0.1s 117 6
JACOBIAN (only Broyden) 1.08s ±0.05s 43 10

• Better runtime, but more optimization steps!
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Automatic Differentiation

• Use automatic differentiation (AD) to calculate Jacobian
instead of finite differences (FD)

• AD in beam dynamics successfully demonstrated with
Cheetah 6 in tracking

• This approach uses linear optics to calculate quantities

• Reduces use of evaluation function

6O. Stein, J. Kaiser, A. Eichler - “Accelerating Linear Beam Dynamics
Simulations for Machine Learning Applications” in Proceedings of the 13th
International Particle Accelerator Conference, 2022
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Automatic Differentiation

• From a transfer map R ∈ R6×6, subsequent optics can be
calculated

• e.g. βx2 = 1
βx1

((R11(kQ1 , . . . )βx1 − R12(kQ1 , . . . )αx1)2 + R12(kQ1 , . . . )2)

• Chaining possible to calculate optics from start to end
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JAX
• ML/AI hype boosted efforts in tools for fast differentiation

• JAX7 is a library to calculate derivatives via AD,
developed by Google

• Creates computational graph and uses chain rule

v−1

v0

v1

v 2
−1

v2

sin(v0)

v3

v0 · v1

v4

v2 + v3
x1

x2

f (x1, x2) = x2
1x2 + sin(x2)

7Min Lin. “Automatic Functional Differentiation in JAX”. In:
International Conference on Representation Learning. Ed. by B. Kim et
al. Vol. 2024.
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Automatic Differentiation

• Use JAX to create computational graph of transfer maps
• Advantages:

• Sequence and matrices don’t change
• Can be JIT-compiled → increases performance

• Yields derivatives of optics parameters with respect to
physical quadrupoles
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Not the Full Story. . .

• AD yields e.g. ∂βx

∂k1
, but we need ∂βx

∂knob1
!

• Through chain rule, it is ∂βx

∂knobn
= ∂βx

∂k1
∂k1

∂knob1
. . . ∂knobi

∂knobn
• To obtain these, one has to traverse the control system
hierarchy
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Differentiating Control System Model
∂βx

∂knobn
= ∂βx

∂k1
∂k1

∂knob1
. . . ∂knobi

∂knobn

Q1 Q2 Q3

in seriesHardware

Software

Knob 1

Knob 2

. . .

Observation point (βx , αx , . . . )

October 8, 2025 Numerical Optimization Strategies for Optics Matching 27



Differentiating Control System Model
∂βx

∂knobn
= ∂βx

∂k1
∂k1

∂knob1
. . . ∂knobi

∂knobn

Q1 Q2 Q3

Hardware

Software

Knob 1

Knob 2

. . .

∂knob1
∂knob2

∂k1(Q1)
∂knob1

∂k1(Q2)
∂knob1

∂k1(Q3)
∂knob2
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Differentiating Control System Model

• Traverse the graph for each knob to find affected
quadrupoles

• Symbolically differentiate the expressions affiliated to the
knobs

• SymPy 8 used for symbolic differentiation
• Advantages:

• Expressions are small, so JIT would cause more overhead
• Only needed once (except if lattice/knobs change)

8Aaron Meurer et al. “SymPy: symbolic computing in Python”. In:
PeerJ Computer Science 3. 2017
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Results
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Benchmark Setup

• Benchmarked on IP1 optics matching example

• Executed on Ubuntu machine with Intel(R) CoreTM

i7-14700T
• Two configurations

• Xsuite with Finite Differences (default)
• Xsuite with Automatic Differentiation

• Analyze for different frequency of Broyden use

• 10 runs
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Results Runtime
• AD substantially faster
than FD approach

• Broyden increases
performance for FD, not
notable for AD

• Increases number of
iterations, thus also
number of calls None 1 2 3 4 5 6 7 Full

Consecutive Broyden Usage
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Runtime Optics Matching IP1
AD
FD

Method Runtime No. Calls No. Iterations
FD (no Broyden) 2.9s ± 0.1s 117 6
FD (only Broyden) 1.08s ± 0.05s 43 10
AD (no Broyden) 0.63s ± 0.08s 12 6
AD (only Broyden) 0.64s ± 0.05s 22 10
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Broyden vs. Optimization Steps
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Optimization Steps Optics Matching
AD
FD

Method Runtime No. Calls No. Iterations
FD (no Broyden) 2.9s ± 0.1s 117 6
FD (only Broyden) 1.08s ± 0.05s 43 10
AD (no Broyden) 0.63s ± 0.08s 12 6
AD (only Broyden) 0.64s ± 0.05s 22 10
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Conclusion
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Conclusion

• Two main ways explored to improve optimization
performance

• Fast way: Broyden’s method
• Simple implementation and integration
• Flexible, can be used for different problem definitions

• Limited, but faster way: Automatic Differentiation
• Very fast calculation
• Limited to optics calculation, for now
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Outlook

• Limitations of AD
• So far only works for optical functions
• Only for quadrupole strengths as variables
• Matching Chromaticities requires further effort

• Full nonlinear dynamics with AD is developed in
MAD-NG 9, developed inhouse

• Improve its integration with Xsuite, especially for fast Jacobian
computation

• Compare performance to JAX

9L. Deniau, “MAD-NG, a standalone multiplatform tool for linear and
non-linear optics design and optimisation”, 2025, arXiv:2412.16006
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