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Introduction

* Control beam optics in modern accelerators
* Twiss parameters, tunes, dispersions, chromaticities

* Closed analytical form not feasible

Instead: Find solution numerically

* Continuous process, performance becomes limiting factor
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Xsuite !

Tracking and optics Generation of particles
2 engine distributions
=
.é Xfields Xdeps
\ »  Computation of EM fields Data flow manager,
\X S .te ﬁ from particle ensembles deferred expressions
ul £
-, & Xcoll Xwakes
/ Particl itter i i and
and collimation impedances
Xobjects
H Interface to different computing platforms
° Bea m dyn a m | CS (CPUs and GPUs of different vendors)
. . . -
simulation toolkit CFFI PyOpenCL gy Gury OpenMP

e Written in Python, some intel AMDZ1 <% nviDIA
parts C++ and CUDA

* Includes matching routines, e.g. for optics

* More info: https://xsuite.web.cern.ch

More information in S. Lopaciuk’s talk about Xsuite developments
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https://xsuite.web.cern.ch

Subpackages

* Xtrack
* Physical modeling of accelerator components
* Tracking particle simulations

* Xdeps
* Modeling accelerator by control system

* Knobs that control magnet circuits
* Software representation of dependencies

* Other packages for other use cases (Xobjects, Xpart, .. .)
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Control System

import xtrack as xt

env['knob2'
env['knobl'

1=10
1

Software

Hardware

Observation point (8, x, ... )

env = xt.Environment ()

= 'knob2*1.0"

line = env.new_Line(components=[

- env.new('do’, xt.
env.new('Ql’, xt.
env.new('dl’, xt.
env.new('02', xt.
env.new('d2", xt.
env.new('Q3', xt.
env.new('d3’, xt.

prift, length=1.0),

Quadrupole, length=0.5, kl='knobl*1.6'),
Drift, length=1.0),

Quadrupole, length=0.5, ki='knobl*(-1.6)'),
Drift, length=1.0),

Quadrupole, length=6.5, ki='knob2+*1.0'),
prift, length=1.0),

* Blue modeled by Xtrack, red by Xdeps

* Simple beamline definition in code
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Matching Capabilities in Xsuite
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Optics Matching

¢ Defined as continuous box-constrained optimization
problems
* Varying parameter and target dimensions
* Commonly more than 20 parameters and targets

* Minimize penalty function f w.r.t. desired targets t
* Knobs are parameters of optimization problem
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How to Define it?

* Match tunes for quadrupole strengths
* 2 Variables, 2 Targets

opt = line.match(solve=False,
vary=xt.VaryList(['knl f', 'knl d'], step=le-3),
targets=[xt.TargetSet(gx=.18, qy=.16)])

* Solve optimization: opt.solve()
* Get merit function: opt.get merit function()

e Usable for custom optimizers
e Can provide jacobian with get_jacobian()
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Implemented Algorithms

¢ Supports following algorithms

Method Dimension Use in Xsuite
Jacobian ? (default) vectorial opt.run_jacobian()
Trust region reflective 3 | vectorial opt.run_1ls_trf ()
Dogbox 3 vectorial opt.run_ls _dogbox ()
L-BFGS-B 3 scalar opt.run_1 bfgs b()
BFGS 3 scalar opt.run bfgs()
Nelder-Mead 3 scalar opt.run_nelder _mead()
DIRECT 3 scalar opt.run_ direct()

2Developed inhouse
3Implemented in SciPy
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Case Study: LHC Optics Matching

¢ Reach .
fx = 0.15m, N B
B, =0.1m at (il H —

I

collision point

« Find gor |
strengths ki for
30 quadrupoles 23000 24000 s["l]25 00 26000
within 4 km
around IP1

N

e 2146 elements from
starting point to IP1
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How to define the Optimization
Problem

opt = line.match(
default_tol={None: 1le-8, 'betx': le-6, 'bety': le-6, 'alfx': le-6, 'alfy': le-6}
start='s.ds.18.bl', end='ipl',
init=twe, init_ at=xt.START
vary=[
xt.VaryList(['kg6.18b1', 'kq7.18b1l', 'kq8.18b1l', 'kq9.18bl', 'kql0.18bl'
'kqtl11.18b1', 'kqtl2.18bl', 'kqtl3.18b1',
'kq4.18b1', 'kq5.18bl', 'kqg4.r8bl', 'kq5.r8bl’,
'kg6.r8bl', 'kq7.r8bl', 'kqg8.r8bl', 'kq9.r8bl',
'kq1@.r8bl', 'kqtlll.r8bl', 'kqtl2.r8bl', 'kqt13.r8bl'])],
targets=[
xt.TargetSet(at='ip8', tars=('betx', 'bety', 'alfx', ‘'alfy', 'dx', 'dpx'), value=tw@),
xt.TargetSet(at='ipl', betx=0.15, bety=0.1, alfx=0, alfy=0, dx=0, dpx=0),
xt.TargetRelPhaseAdvance('mux', value = twO['mux', 'ipl.11'] - tw@['mux', 's.ds.18.b1'],
start = 's.ds.18.b1l', end = 'ipl.11'),
xt.TargetRelPhaseAdvance('muy', value = tw@['muy', 'ipl.11'] - tw@['muy', 's.ds.18.b1'],
start = 's.ds.18.b1', end = 'ipl.11'),
1)

* Defines tolerances, start/end point, initial conditions, 20
knobs and 14 targets
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Initial Status Case Study

Method Runtime No. Calls | No. lterations
Jacobian | 2.9s 4+ 0.1s 117 6

Can we do better?

@FAST October 8, 2025 Numerical Optimization Strategies for Optics Matching



Initial Status

Method Runtime No. Calls | No. lterations
Jacobian | 2.9s + 0.1s 117 6

Can we do better?

¢ Fairly speaking, this is already quite good
* |terative process that has to be repeated many times
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Other Algorithms?

* Scalar algorithms (L-BFGS-B, BFGS, Nelder-Mead) did
not converge for this case

* Vectorial algorithms converge (TRF, Dogbox) but slower

Method Runtime No. Calls | No. Iterations
JACOBIAN 2.9s + 0.1s 117 6
TRF 15s £+ 1s 463-597 20-25
Dogbox 7.8s £ 0.16s 265 12-15
L-BFGS-B | no convergence | 17450 1200
BFGS no convergence 2690 600
Nelder-Mead | no convergence | =~ 5000 10000
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JACOBIAN Algorithm #

* Main algorithm used for matching in Xsuite, based on
Newton-Raphson
¢ Calculate Jacobian J, e.g. with finite differences
*Stepp=J"y
* JT is the pseudo-inverse of jacobian J obtained through SVD
* v is the weighted error vector

* Set aw = —1, evaluate f(X — 27%p) until error reduces
while incrementing «

4 R. De Maria, F. Schmidt, and P. K. Skowronski, “Advances in matching
with MAD-X.” in Proc. ICAP'06, Chamonix, Switzerland, Oct. 2006, pp.
213-215.
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Challenges

* JACOBIAN algorithm is robust local optimizer, works if
starting point is “close” to solution.

¢ Designing optics is an iterative process — smaller runtime
has stronger impact

* Bottleneck: Calculating Jacobian matrix (one twiss call
per variable)

Total Twiss calls | Twiss calls for Jacobian
117 100

Focus on improving derivative computation!
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Performance Improvements
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Broyden's Method °

* Broyden's method to

Twiss Calls Matching IP1

120
approximate Jacobian matrix o \
+ Compute 221\
Ayn—JoAZ)ART ©
Jpy1 = S BEZEERE fw
© AX, = Xy — Xp-1, 2 :Z "
AYn :}7n _}7n—1 50
* Finite differences for oo ; =
derivatives Consecutive Broyden Usage

* Simple calculation — improves performance

e Works if Jacobian's are similar between iterations

® Broyden, C. G. (1965). " A Class of Methods for Solving Nonlinear
Simultaneous Equations”. Mathematics of Computation. 19 (92). American
Mathematical Society: 577-593.
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Broyden Results

Runtime Optics Matching IP1 Optimization Steps Optics Matching
3.00 ]K - FD 10.0{ -e- D
2.75 \ 9.5
@250 \ 9.0
g 2.25 L 85
€ 2.00 g 80
o (2]
c 175 7.5
©
2150 7.0
1.25 6.5
1.00 6.0
None 1 2 3 4 5 6 7 Full None 1 2 3 4 5 6 7 Full
Consecutive Broyden Usage Consecutive Broyden Usage
Method Runtime No. Calls | No. lterations
JACOBIAN (no Broyden) 2.9s £ 0.1s 117 6
JACOBIAN (only Broyden) | 1.08s £0.05s 43 10

* Better runtime, but more optimization steps!
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Automatic Differentiation

* Use automatic differentiation (AD) to calculate Jacobian
instead of finite differences (FD)

* AD in beam dynamics successfully demonstrated with
Cheetah © in tracking

* This approach uses linear optics to calculate quantities

¢ Reduces use of evaluation function

0. Stein, J. Kaiser, A. Eichler - “Accelerating Linear Beam Dynamics
Simulations for Machine Learning Applications” in Proceedings of the 13th
International Particle Accelerator Conference, 2022
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Automatic Differentiation

* From a transfer map R € R®*®, subsequent optics can be
calculated

*eg Be= g ((Rulke, - )Ba — Ru(ka, - Jax)’ + Rulke, )%

 Chaining possible to calculate optics from start to end
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JAX o

* ML/AI hype boosted efforts in tools for fast differentiation

« JAX" is a library to calculate derivatives via AD,
developed by Google

* Creates computational graph and uses chain rule

2
Vi Vo vi

f(x1, %) = X12X2 + sin(x2)

X2

"Min Lin. “Automatic Functional Differentiation in JAX". In:
International Conference on Representation Learning. Ed. by B. Kim et
al. Vol. 2024.
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Automatic Differentiation

* Use JAX to create computational graph of transfer maps
* Advantages:
* Sequence and matrices don't change
* Can be JIT-compiled — increases performance
* Yields derivatives of optics parameters with respect to
physical quadrupoles
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Not the Full Story. ..

« AD yields e.g. %, but we need 8I?r1ﬁgb1!

* Through chain rule, it is Bl?r?oxbn g_%a/?nlgbl g}(‘,’;gg;

* To obtain these, one has to traverse the control system
hierarchy
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Differentiating Control System Model

aﬂx _ % 6k1 8knob,-
Oknob, — 0Oki Oknoby * ** Oknob,

Software

Hardware

Observation point (Sx, ax, ... )
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Differentiating Control System Model

aﬂx — % Oki aknob,'
Oknob, — 0Oki Oknoby " * dknob,

dknoby Knob 2

noi

Knob 1

ki (Q
ki (@) ﬁﬁ)

noby

ki (Q2)

noby

@ @ @
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Differentiating Control System Model

* Traverse the graph for each knob to find affected
quadrupoles

* Symbolically differentiate the expressions affiliated to the
knobs

 SymPy 8 used for symbolic differentiation
* Advantages:

* Expressions are small, so JIT would cause more overhead
* Only needed once (except if lattice/knobs change)

8Aaron Meurer et al. “SymPy: symbolic computing in Python”. In:
PeerJ Computer Science 3. 2017
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Results
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Benchmark Setup

Benchmarked on IP1 optics matching example

* Executed on Ubuntu machine with Intel(R) Core™
i7-14700T
* Two configurations

* Xsuite with Finite Differences (default)
* Xsuite with Automatic Differentiation

* Analyze for different frequency of Broyden use

e 10 runs
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Results Runtime

« AD substantially faster o e e
than FD approach 25 \ =T
* Broyden increases 2,
performance for FD, not £ -
notable for AD g —
* Increases number of *10
iterations, thus also osl F .
number Of caIIs tone Coilsecujtive I;royd:n Usage 7o
Method Runtime No. Calls | No. Iterations
FD (no Broyden) 2.9s £ 0.1s 117 6
FD (only Broyden) | 1.08s & 0.05s 43 10
AD (no Broyden) | 0.63s £ 0.08s 12 6
AD (only Broyden) | 0.64s & 0.05s 22 10
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Broyden vs. Optimization Steps

Twiss Calls Matching IP1 Optimization Steps Optics Matching
120 —e— AD 10.0 { —e— AD
100 - o5
" 9.0
E 80 , 85
-g 60 § 8.0
c 7.5
2 4 7.0
2 6.5
6.0
None 1 2 3 4 5 7 Full None 1 2 3 4 5 7 Full
Consecutive Broyden Usage Consecutive Broyden Usage
Method Runtime No. Calls | No. Iterations
FD (no Broyden) 2.9s £ 0.1s 117 6
FD (only Broyden) | 1.08s & 0.05s 43 10
AD (no Broyden) | 0.63s £ 0.08s 12 6
AD (only Broyden) | 0.64s & 0.05s 22 10
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Conclusion
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Conclusion

* Two main ways explored to improve optimization
performance
* Fast way: Broyden's method
e Simple implementation and integration
* Flexible, can be used for different problem definitions
¢ Limited, but faster way: Automatic Differentiation
* Very fast calculation
* Limited to optics calculation, for now
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Outlook

¢ Limitations of AD
* So far only works for optical functions
* Only for quadrupole strengths as variables
* Matching Chromaticities requires further effort

* Full nonlinear dynamics with AD is developed in
MAD-NG ¢, developed inhouse

* Improve its integration with Xsuite, especially for fast Jacobian
computation
* Compare performance to JAX

°L. Deniau, “MAD-NG, a standalone multiplatform tool for linear and
non-linear optics design and optimisation”, 2025, arXiv:2412.16006
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