RF-Track Modeling of FCC-ee Injector Linacs and Optimization of Linac-to-Ring Transmission

Andrea Latina, CERN andrea.latina@cern.ch

Table of Contents

1. FCC-ee Injector Baseline Layout

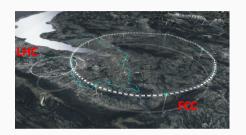
- Positron Source
- Damping Ring

2. RF-Track Simulation of the FCC-ee Injector

- RF-Track Overview
- 6D Dynamic Aperture

3. Transmission Optimization

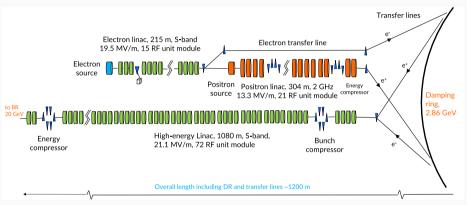
- Transverse Plane
- Longitudinal Plane


4. Conclusions

- Summary
- Outlook

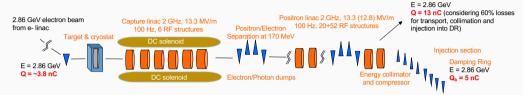
FCC-ee Injector Baseline Layout

FCC-ee Injector Specifications


Running mode	Z	W	ZH	$t \bar{t}$	Unit
Number bunches in collider	11200	1856	300	64	
Nominal bunch charge in collider	34.40	22.08	27.04	23.68	nC
Allowable charge imbalance	5	3	3	3	%
Beam lifetime, lumi 4 IPs (q, BS, lattice)/4	916	517	428	497	s
Trains/Bunches per booster cycle	40×280	8×232	2×150	2×32	
Max injected bunch charge	3.43	3.43	1.60	1.60	nC
Number of bunches	4	4	2	2	
Linac rep. rate	100	100	50	50	Hz
Bunch spacing		ns			
Beam energy at BR		GeV			
Norm. emittance (x, y) (rms) (BR)		mm mrad			
Bunch length (rms) (BR)	~4				mm
Energy spread (rms) (BR)		%			

- Continuous operation due to the short beam lifetime.
- The charge imbalance between the electron and positron beams in the collider remain within 3-5%. This constraint requires a precise and uninterrupted injection process to maintain beam-beam stability.
- The top-up operation for each operating mode requires the charge of the individual bunch in the train to vary from a few tens of pC to about 4 nC per injection.
- The reliability and availability of the injector is of critical importance, as any downtime could compromise the overall
 efficiency of the collider.

FCC-ee Injector Baseline Layout


Outcome of the Feasibility Study

- Beam: train of 4 bunches (25-ns spacing), 5 nC bunch charge
- e^- linacs: S-band, 100 Hz; e^+ linacs: L-band
- Damping ring at higher energy: 2.86 GeV

FCC-ee Positron Source

Capture system (~ 20 meters)

Positron production: conventional scheme (e- beam size on target = 1 mm rms). Target exit located at 40 mm w.r.t. HTS solenoid peak field.

 $\textbf{Matching device} \text{ is based on the SC solenoid (5 HTS coils, 72 mm bore, } \varnothing \text{ 60 mm including shielding)}$

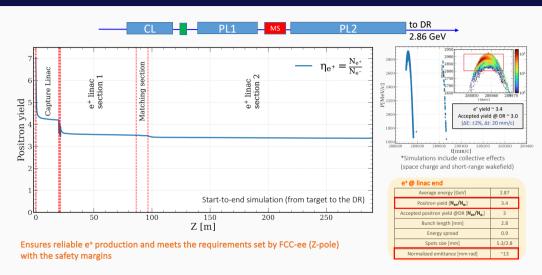
Capture linac is based on the 6 L-band TW RF structures (2 GHz, ∅ 60 mm, 3-m long)

NC solenoid B = 0.5 T (realistic conventional design based on the short coils B = 0.31 T) + short "tuning" solenoid B = 0.25 T before the 1st RF structure

Positron linac (~ 280 meters)

 $\textbf{Separator chicane:} \ \text{Rectangular beampipe and hor./vert. collimators, Dipole peak field: $$^\circ$0.2 T $$$

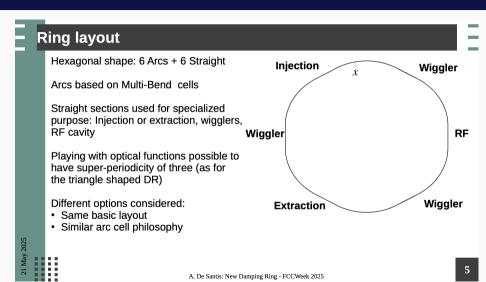
 $\textbf{Section 1}: up \ to ~930 \ MeV. \ Same \ RF \ structure \ as \ that \ of \ the \ Capture \ Linac \ (CL). \ 20 \ structures. \ G = 13.3 \ MV/m$


Matching section: 5 quadrupoles (0.4 m long)

Section 2: up to 2.86 GeV. Same RF structure as that of the CL. 52 structures. Quadrupole (0.4 m long), 2 structures per FODO cell. G = 12.8 MV/m

Slide courtesy of I. Chaikovska, IJCLab

FCC-ee Positron Source

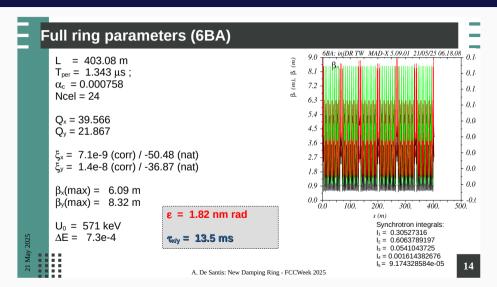


Slide courtesy of I. Chaikovska, IJCLab

FCC-ee Damping Ring

Antonio De Santis, LNF-INFN, FCC-week 2025, Vienna

FCC-ee Damping Ring


Parameters	Value	
Energy [GeV]	2.86	[] [— p, [m]] [] [] [] [] []
Circumference [m]	373.46	0 — β _p (m)
Arc Cell	multi-bend	
Lattice shape	six-fold symmetry	- Italian Charles Committee Committe
Nat. emittance [nm rad] (WGL on/off)	1.3 / 2.3	
Bunch Lenght [mm]	5.1	
Damping time $\tau_{x,y}$ (WGL on/off) [ms]	16.9 / 29.4	a prosperio de la companya de la com
Nat. Cromaticity (x/y)	-38.2/-28.3	. INTRANT, INTERNAL INTRANTAL, INTERNAL, INTERNAL, INTERNAL
Nat. energy spread (WGL on/off) [10 ⁻⁴]	7.1 / 5.2	harmond harmond harmond harmond harmond harmond
Betatron amplitude max (x/y) [m]	9.66 / 6.49	0 60 100 160 200 250 300 350
Betatron amplitude min (x/y) [m]	0.5 / 1.1	z [m]
Tune (Q_x, Q_y)	27.8707 / 22.3728	0.9
Momentum compaction (WGL on/off) $[10^{-3}]$	1.55 / 1.57	—
Revolution period $[\mu s]$	1.2457	
Dipole #, length [m], field [T]	180 , 0.7 1.13, 0.34 0.39	0.15 miletter miletter miletter miletter miletter miletter miletter
Wiggler #, length [m], field [T]	3, 3.5 , 1.8	_ itselfett fettigt ittellett tiettett itellett fettigt.
Cavity #, length, voltage [MV]	1.5, 4	E
Max. # Bunch stored, Bunch Curr. [mA]	40 / 4	. Hadrad Barbad Bahadi Karbad Karbad Barbad Barbad
Store time	$5 \tau_y$	0.00
Energy loss per turn (WGL on/off) [keV]	422.2 / 246.7	
SR power loss wiggler [kW]	27.83	

, 2025

A. De Santis: New Damping Ring - FCCWeek 2025

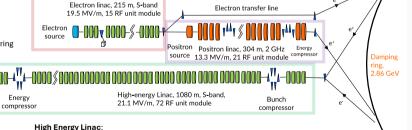
FCC-ee Damping Ring

FCC-ee Injector Simulation

FCC-ee Injector Simulation Requirements

Time integration

- Elements overlap
- Realistic fields
- Coherent Synchrotron Radiation (EC)


Positron source and Positron Linac:

- Beam loading from electrons and positrons
- Misalignments, BBA, Dynamic Effects

Electron Linac:

- Multi-bunch beam loading
- Short- and Long-range wakefields Misalignments, BBA, Dynamic Effects

- Photoiniector:
- Elements overlap
- Time integration
- Beam loading
- Space-charge
- Realistic fields
- Intra-beam scattering

- Short- and Long-range wakefields
- Multi-bunch beam loading
- Coherent Synchrotron Radiation (BC, EC)
- Misalignments, BBA, Dynamic Effects

Damping Ring: DA studies

- Dynamic aperture
- Synchrotron Radiation
 - (Space-charge)

Transfer lines

(Intra-beam scattering)

What is RF-Track?

RF-Track Characteristics

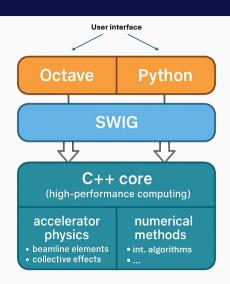
- RF-Track is a CERN-developed particle tracking code
- Simulates generation, acceleration, and transport of any particle species
- Works with both realistic 3D field maps, special and conventional beamline elements

Specific Applications

- Photo-injectors and electron guns
- Positron sources
- High-intensity **electron linacs**
- RFQs and high-intensity proton and ion linacs
- Ion-electron cooling
- Inverse Compton scattering X-ray sources
- Ionization cooling channel of the Muon Collider

RF-Track Architecture

High-performance, Multi-Threaded C++ Core


- · Relativistic transformations
- Three- / Four-vectors
- 1D/2D/3D meshes
- · Robust interpolators
- Quaternions
- Truncated Power Series Algebra (TPSA)

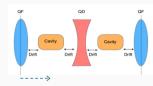
Accelerator Simulation Core

- · Beamline elements
- · Electromagnetic fields
- · Collective effects

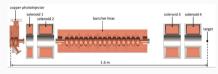
User Interface: Python / Octave

- Beamlines & beams
- · Imperfections
- · Orbit correction schemes

In-Time and In-Space Tracking

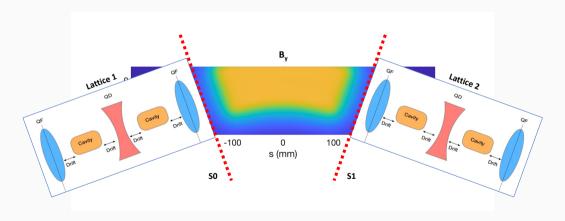

Lattice: "in-space" beam evolution

- A list of elements
- Tracks the particles element by element, along the longitudinal direction
- Elements can be arbitrarily misaligned


Volume: "in-time" beam evolution

- A portion of 3D space
- Elements can be placed anywhere
- Element misalignment via Euler angles (pitch, yaw, roll)
- Allows element overlap
- Allows creation of particles
- Can simulate cathodes and field emission
- Suitable for space-charge-dominated regimes

Example of Lattice: FODO cell


Example of Volume: Photoinjector

Volume as a Lattice element

The boundaries of a Volume can have arbitrary orientation in space:

⇒ A Volume can be **sandwiched** between two Lattices.

RF-Track Highlights

Key Capabilities

- Tracking in **time** and **space** of **any particle** at **any energy**, including **spin**
- Realistic fields and arbitrary field maps
- Overlapping elements
- Space-charge effects
- Beam-beam effects
- Intra-beam scattering
- Wakefields (short- and long-range)
- Synchrotron radiation emission
- Multi-bunch Beam loading in SW and TW structures
- Particle-matter interaction
- Arbitrary element misalignments
- Beam-based alignment algorithms
- Back-tracking also in the presence of collective effects

RF-Track Community

Those I am aware of:

RFQs, hadron linacs: Peking University (China), Dongguan (China), Institute of Modern Physics, Lanzhou (China), CIEMAT (Spain), IFIC Valencia (Spain)

Photo-injectors: CLEAR (CERN), CTF2 (CERN), SwissFEL (PSI), ESRF

Positron sources: FCC-ee (IJClab, CERN), CLIC (CERN)

Optics in field maps: ThomX (IJClab), Synchrotron Soleil (France)

Inverse-Compton Scattering: X-band applications (CERN), ThomX (IJClab), Arizona State University (USA), LASA (Milan, Italy), INFN Ferrara, Korea University

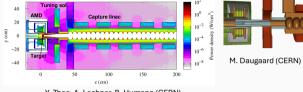
Medical accelerators: PMB (France), THERYQ (France), Thales (France)

High-intensity electron linacs: Injector upgrade at **ESRF**, Thales (France), IFIC Valencia (Spain), C³ electron-positron collider (SLAC), EuSPARC (LNF-INFN), Shanghai Advanced Research Institute (China)

Klystron design: Thales (France)

Exotic scenarios: GaToroid (CERN, Oxford, Groningen), Muon Cooling Channel (CERN, Muon Collider Collaboration)

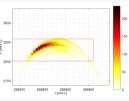
16/35 A. Latina – 10th Low Emittance Rings Workshop – 8-10 October 2025 – DESY, Hamburg


RF-Track Simulations of the

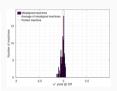
FCC-ee Injector

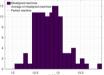
FCC-ee Positron Source

Capture Linac

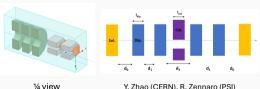


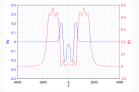
Accurate beam tracking in the target and capture area is crucial

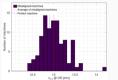

Y. Zhao, A. Lechner, B. Humann (CERN)


Particle losses and energy deposition maps Geant4: Tungsten target for e⁺ production RF-Track: tracking in 250 meters of field maps

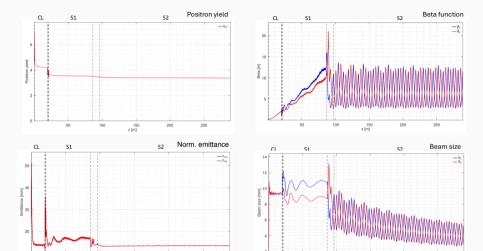
Total yield: 3.37 Yield within window: 2.97


Misalignment studies




13 r. . @ DB (mm)

Chicane


Y. Zhao (CERN), R. Zennaro (PSI)

FCC-ee Positron Source

100

150 z [m]

Y. Zhao, CERN

18/35 A. Latina - 10th Low Emittance Rings Workshop - 8-10 October 2025 - DESY, Hamburg

150 z [m] 200

Damping Ring

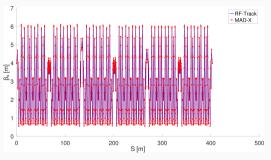
Using the MAD-X lattice in RF-Track:

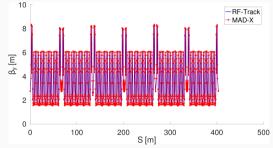
Added the beam pipe physical aperture:

- $R_x = 3$ cm, horizontal radius
- $R_y = 1.5$ cm, vertical radius

to all elements except for the RF structures, where the aperture is fixed by the frequency

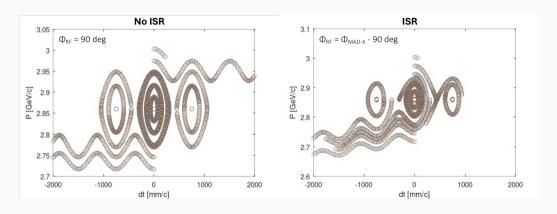
Mechanism for losing particles:


- 1. Particles hit the aperture
- Particles slip off the synchronous RF bucket


```
RF Track:
% Load Lattice
L = Lattice('full_twiss_file.tws');
% Define a bunch
T = Bunch6d_twiss();
T.beta_x = 3.9851:
                                        % m
T.beta_v = 2.7454;
                                        % m
T.alpha_x = 0.0060:
T.alpha_y = -0.0016;
T.emitt x = 13e3:
                                        % mm mrad
T.emitt_v = 13e3;
                                        % mm.mrad
mass = RF_Track.electronmass:
                                        % MeV/c^2
                                        % positron charge
0 = +1:
Nparticles = 10000:
                                        % nb of macroparticles
Pref = 2859.999954:
                                        % MeV/c, reference momentum
% Create a bunch
B0 = Bunch6d_0R (mass, 0.0, 0, Pref, T, N);
% Perform tracking
B1 = L.track(B0):
```

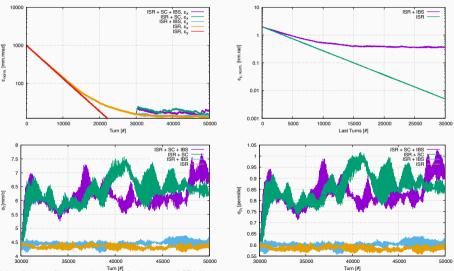
FCC-ee Damping Ring Simulation

Validation of the optics functions:


Horizontal Plane

Vertical Plane

Setting the RF Phase


The lattice has one SW structure - implemented as a pillbox cavity in RF-Track

Multi-turn Tracking

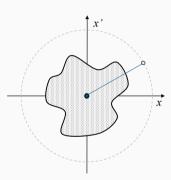
50'000 turns tracking. 10'000 macro particles. 5 nC bunch charge. ISR + quantum-excitation. SC and IBS from turn 30'000.

Tum [#]
22/35 A. Latina – 10th Low Emittance Rings Workshop – 8-10 October 2025 – DESY, Hamburg

6D Dynamic Aperture

6D Dynamic Aperture

There exist two clearly-defined regions in the phase-space:


- (1) where particles survive 1000 turns
- (2) where particles are lost

Given a radial direction in the $\mathbf{x}-\mathbf{x}'$ plane and an initial radius R=1

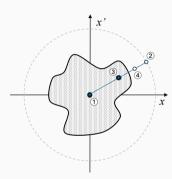
Algorithm:

- 1. Identify the two regions:
 - If R=1 is inside the inclusion region, increase R until it enters the exclusion region.
- 2. Find the separation between the two regions: Use a binary search to find the separation:
 - Stop when $R_{\rm out} R_{\rm in} < \epsilon$ (I used $\epsilon = 0.001~{\rm mm/mrad.}$)
 - Store $R_{\text{surface}} = R_{\text{in}}$.

2D Representation

6D Dynamic Aperture (II)

There exist two clearly-defined regions in the phase-space:


- (1) where particles survive 1000 turns
- (2) where particles are lost

Given a radial direction in the $\mathbf{x}-\mathbf{x}'$ plane and an initial radius R=1

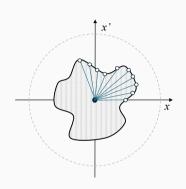
Algorithm:

- 1. Identify the two regions:
 - If R=1 is inside the inclusion region, increase R until it enters the exclusion region.
- 2. Find the separation between the two regions: Use a binary search to find the separation:
 - Stop when $R_{\rm out} R_{\rm in} < \epsilon$ (I used $\epsilon = 0.001~{\rm mm/mrad.}$)
 - Store $R_{\text{surface}} = R_{\text{in}}$.

2D Representation

6D Dynamic Aperture (III)

Step 1. For all points uniformly distributed on a 6D sphere:


- 1. Find its radius $R_{\mathsf{surface},i}$
- 2. Store all $R_{\rm surface,\ \it i}$ points, so that any arbitrary angle can be associated with its $R_{\rm surface}$

The resulting surface (manifold) is the dynamic aperture.

Step 2. Acceptance algorithm:

For each particle in an arbitrary distribution:

- Compute its 5D coordinates on the manifold (i.e., its corresponding index i)
- 2. Compute the distance of the 6D point from the origin, $\ensuremath{\textit{R}}$
- 3. Verify: $\begin{cases} R < R_{\text{surface, } i} & \text{the particle is within the acceptance} \\ \text{otherwise} & \text{the particle is outside the acceptance} \end{cases}$

Calculation in 6D

Challenge:

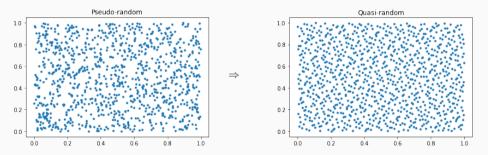
• Given a 6D phase space vector

$$\left(x, \quad x', \quad y, \quad y,' \quad \delta t, \quad \delta\right)$$

with

$$\delta t = t - t_{\text{ref}}$$
$$\delta = \frac{P - P_{\text{ref}}}{P_{\text{ref}}}$$

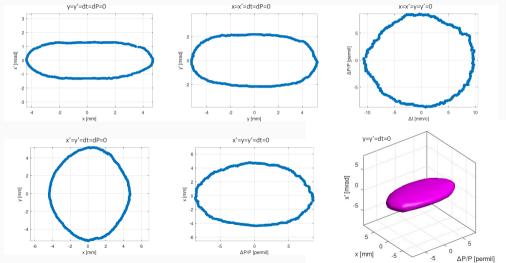
We need to define a criterion for uniformly filling a 5D surface


How to Fill a 6D Surface Uniformly

The solution:

Quasi-Random numbers, a.k.a. Low-discrepancy sequences.

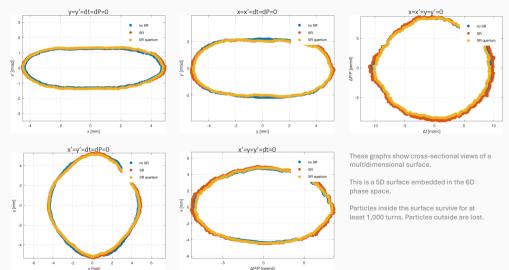
Example in 2D:


 $\textbf{Low-discrepancy sequences} \text{ are deterministic} \Rightarrow \textbf{we can index each point} \text{ on the 5D surface}.$

RF-Track allows to create such distributions, in any dimensions.

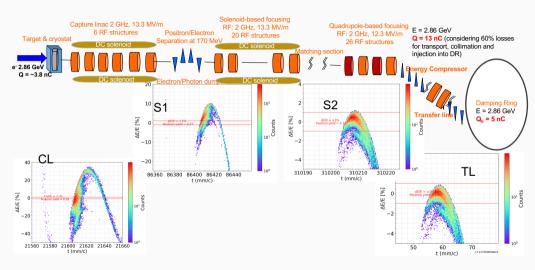
FCC-ee DR's 6D Dynamic Aperture

At the DR entrance:



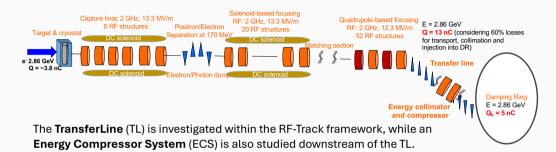
28/35 A. Latina - 10th Low Emittance Rings Workshop - 8-10 October 2025 - DESY, Hamburg

FCC-ee DR's 6D Dynamic Aperture - SR ON


At the DR entrance:

29/35 A. Latina – 10th Low Emittance Rings Workshop – 8-10 October 2025 – DESY, Hamburg

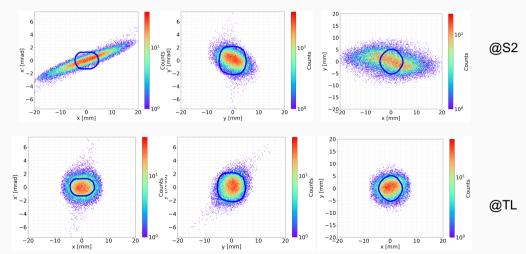
Acceptance in DR



Slide courtesy of Y. Wang, IJCLab

Maximizing Transmission

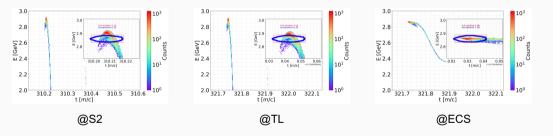
The **TransferLine** is a **special RF-Track element**, whereas the ECS is modelled **using analytical formulae.**


Xopt optimization of the Transfer Line and of the ECS: [$Length, \beta_x, \alpha_x, \mu_x, \beta_y, \alpha_y, \mu_y, R_{56}, R_{65}$]

Slide courtesy of Y. Wang, IJCLab

Optimization - Transverse Plane

Xopt-optimized matching using the element TransferLine:

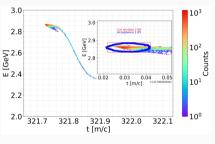


Slide courtesy of Y. Wang, IJCLab 32/35 A. Latina – 10th Low Emittance Rings Workshop – 8-10 October 2025 – DESY, Hamburg

Optimization - Longitudinal Plane

Xopt-optimized Energy Compressor using an analytic formula:

Slide courtesy of Y. Wang, IJCLab


Damping Ring Conclusions

- Start-to-end simulation including the DR (using the FS layout + TL + ECS).
- The DR acceptance is based on the linear tracking without errors. The realistic acceptance will
 probably be even smaller.

Main Bucket (95 %)
3.3 (3.4 FULL)
1.05/ (≲ 2.6*)
14.1/13.2 5.0/6.1
2.54/2.40 0.89/1.09
2.5 % 0.18 %
24.2 mm 3.3 mm
2.6/2.2 1.6/1.2

^{*}Minimum required e* yield for an e* bunch charge of 5 nC

Work in progress to quantify the losses in transverse and longitudinal planes

Conclusions

- The FCC-ee Injector design and optimization is in progress, using RF-Track from the photo-cathode to the booster ring (20 GeV)
- A method to compute the 6D Dynamic Aperture was proposed
- A method to fast match the positron beam to the DR has been tested
- RF-Track is a particle tracking code designed to track particle sin 3D field maps, conventional and non-conventional beamline elements.
 - https://gitlab.cern.ch/rf-track
 - https://pypi.org/project/RF-Track

Outlook

Positron acceptance of the FCC-ee Damping Ring must be improved