

VAriable Dipole for the Elettra Ring (VADER)

Low Emittance Rings' workshop 2025 – DESY, 09/10/2025

Y. Papaphilippou (CERN) for the IFAST collaborators

VAriable Dipole for the Elettra Ring - VADER

- Task within I.FAST WP7: High Brightness Accelerators for Light Sources (led by R. Bartolini, DESY)
- Partners and collaborators:

Y. Papaphilippou (A. Poyet)

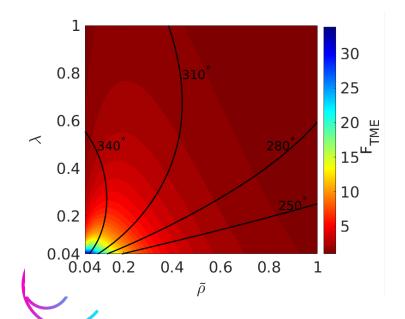
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

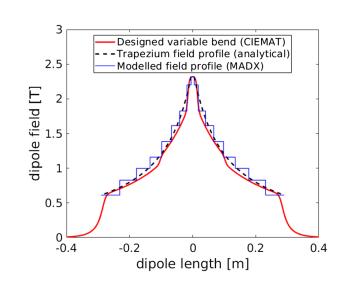
M. Dominguez

F. Toral

E. Karantzoulis

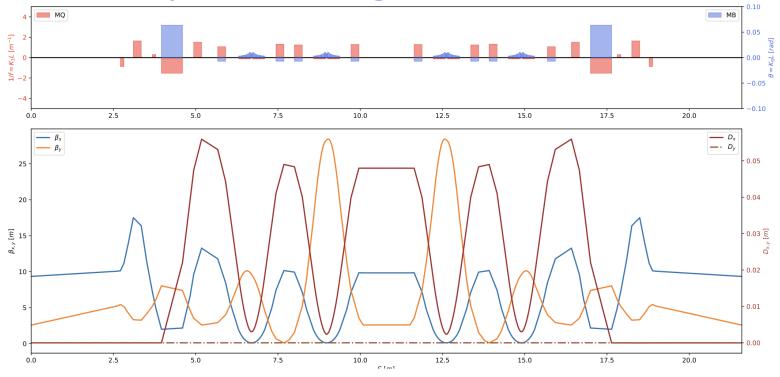
D. Castronovo




R. Geometrante

VADER objectives

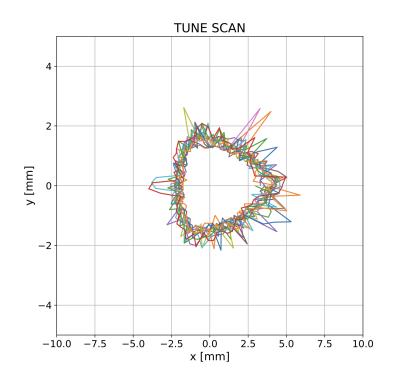
- Fabricate an innovative dipole magnet prototype with longitudinal varying dipole field, including a transverse gradient for the ELETTRA upgrade
- Permanent magnet concept with trapezoidal bending radius, 2.3 T peak field and ~10 T/m gradient, already established (CERN/CIEMAT)
- Proved the horizontal emittance reduction to ultra-low levels of i.e. ~60 pm @ 2.86 GeV, for the CLIC DR (M. A. Domínguez Martinez et al., IEEE Trans. Appl. Supercond. 28, 1, 2018; S. Papadopoulou et al, PRAB 22, 1091601, 2019)
- First demonstrator constructed/qualified by CIEMAT

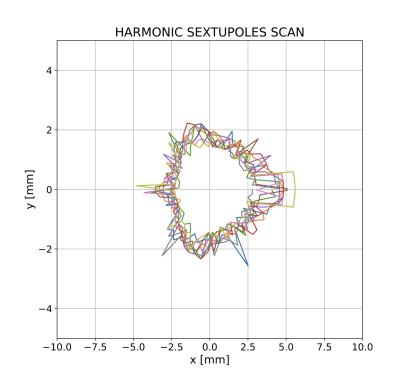

VADER objectives

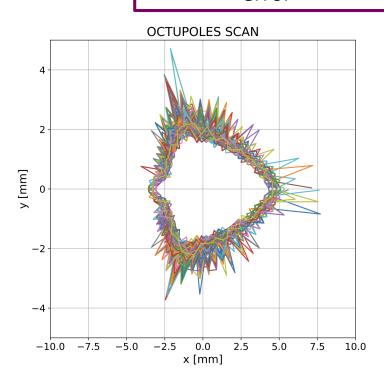
- Keep the same S6BA-E lattice for Elettra and replace the LG dipoles by VADER ones.
 - Implement a trapezoidal profile in bending radius
 - Observe a clear emittance reduction
- Some constraints:
 - Same geometrical layout
 - Same total bending angle for each dipole
 - Same dipole length
- But also some freedoms:
 - We set the dipole peak field at 2.3 T (as for the CLIC magnet) instead of the current 1.8 T

Lattice and optics design

A. Poyet

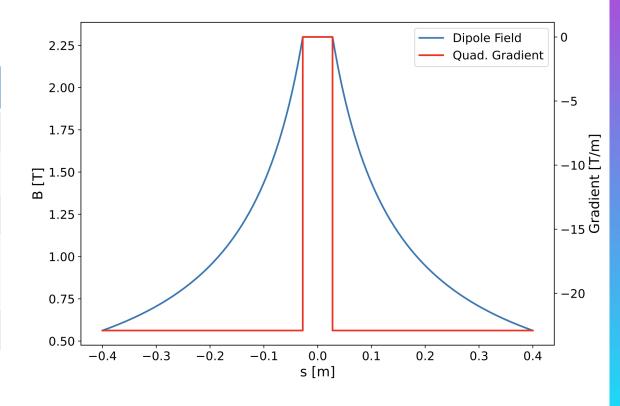

- Optics constraints at the ID are matched
- Horizontal emittance reduction from 212 to 100 pm (more than factor of 2!)


- Tunes: 34.706 / 22.852
- Chromaticities: -157/-125



Non-linear Optimization

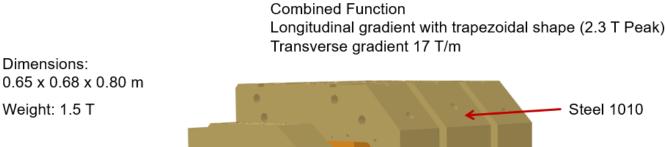
On-momentum, without error


- → Up to ~ 6 mm DA in the horizontal plane, ~ 3 mm in the vertical one
- → Good starting point for further iterations, including errors/corrections, tune optimisation etc.

Profile Design and Magnet Specifications

- Similar parameters as CLIC DR but...
 - Higher transverse gradient (> factor of 2)
 - Higher magnetic gap (~40%)
 - Longer magnet (~40%)

Specifications	CLIC DR	VADER	
Magnet Gap (mm)	13	18	
Max Field (T)	2.3	2.3	
Transverse G (T/m)	11	23	
Field Quality (Units 1E-4)	≈ 1	≈ 1	
Magnet Length (cm)	56	80	


Magnetic design challenges

- Needed to satisfy field requirements for curved trajectory.
- Curved trajectory combined with higher gap and low multipole content for iron dominated magnet that works under saturation, extremely difficult objective
- Sagitta much higher than expected
- Impossible to perform required calculations with Opera software for curved trajectory
- This forced to manually develop in-house code (CIEMAT) to analyse field quality in both Opera & Matlab

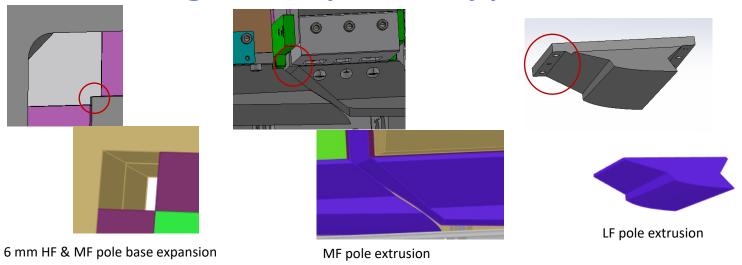
Magnetic Design @ CIEMAT

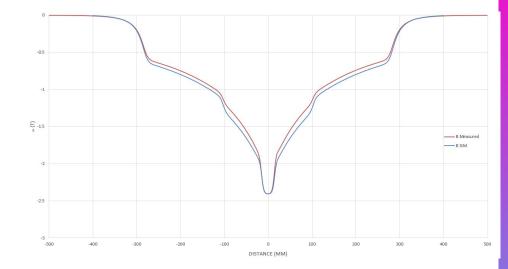
M. Dominguez, F. Toral

Armco

NdFeB in LF, MF and HF

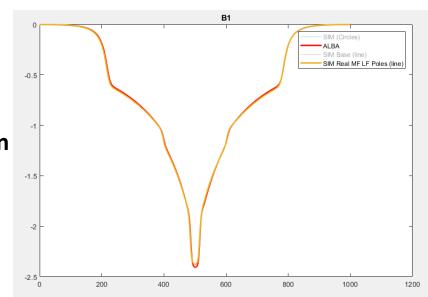
- Longitudinal gradient profile achieved
- Integrated transverse gradient slightly below specs but ok for optics
- Field quality looks reasonable
- Mechanical design done

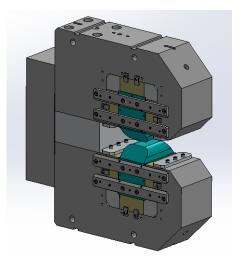

Hyperbolic pole tips profile


Flux concentration

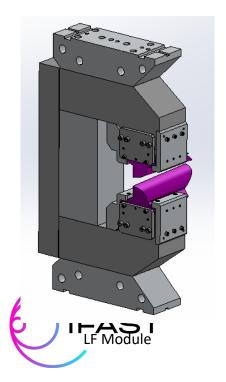
Field trimming

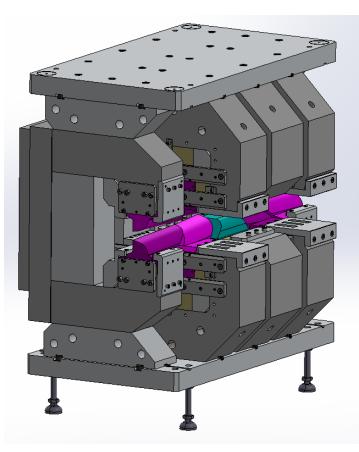
B1	B2	В3	B4	B5	В6	В7	B8	В9	B10
10000	-807.79	4.65	6.74	-1.09	0.21	-0.07	2.55E-05	-0.01	-0.03


Resolving CLIC prototype issues for VADER

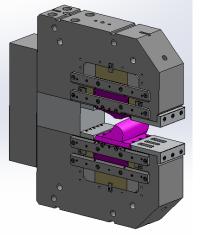


- Discrepancy in CLIC prototype between simulations vs magnetic measurements: 4% lower integrated dipolar field
- Various investigations: missing Armco heat treatment, misalignment, hysteresis, simulation error, etc.
- Traced back to 3D mechanical model details not reflected Opera simulation model due to simplifications
- All three simulated allow model matching perfectly magnetic measurements: 0.641T simulated vs 0.638T measured





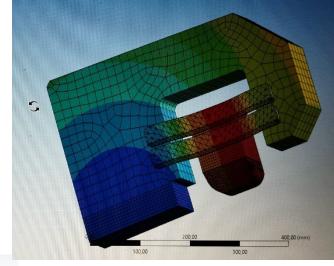
VADER: Final Mechanical Design

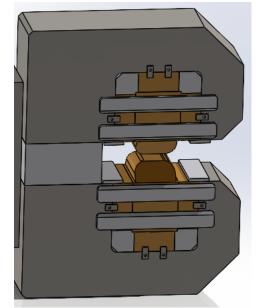


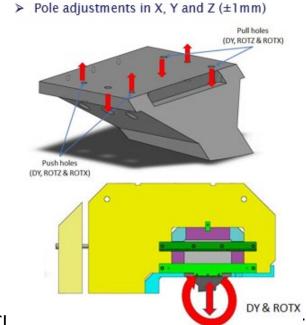
HF Module

Final assembly

MF Module



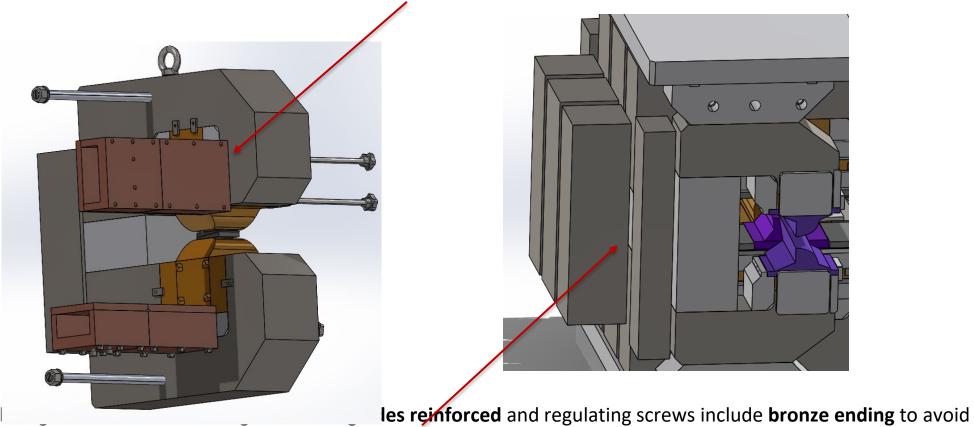

Fig. 6: Deformations in the HF module



Base with guides

VADER vs CLIC Prototype: Main differences

Iron yokes formed by 3 main pieces instead of one, screwed from iron to iron across aluminium support block (before first assembly step)



• In VADER, same pole adjustments in MF and LF modules present in CL.

VADER vs CLIC Prototype: Main differences

• PM blocks bigger, meaning higher forces. POM boxes redesigned (longer) and second one to carry block added

Moving parts of fiel

fluency with time (instead of plastic in CLIC)

VADER: Timeline

- Final manufacturing drawings done on February 2025
- Iterations for magnetic material selections during March 2025
- From mid-April 2025, Kyma proceeded with procurement of components (waiting for quotes)
- Magnetic material delivery (expected during summer 2025) delayed due to shipping issues to September 2025
- All parts machined and sent to KYMA on early October 2025
- Assembly process is estimated to take ~2 weeks (procedure communicated by CIEMAT, based on CLIC prototype experience)
- Estimated date for full fabrication: mid-October 2025
- Measurements in Elettra for acceptance tests (bench/mole procured) end of October 2025

VADER: Achievements

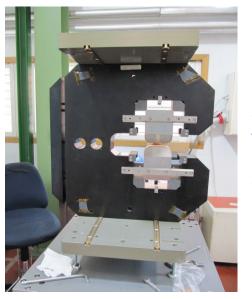
- Specified longitudinally varying dipole with gradient for reducing horizontal emittance of Elettra upgrade SR by factor of 2
- Designed advanced permanent magnet dipole with variable field and gradient including mechanical field trimming reaching all specs (sustainability!)
- Adress various challenges/limitations with present/previous design
- Magnet is in the procurement/fabrication face in KYMA (industrial partner) reaching TRL6 (Technology demonstrated in industrially relevant environment)
- Ready for series production and industrialization
- Technology to be used in future low-emittance rings (light source SRs, damping rings for colliders such as FCC, etc...)

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

CLIC: Preliminary Assembly

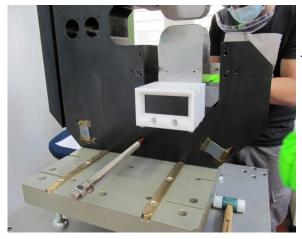
• A preliminary assembly without permanent magnets (PM) should be done to assure the correct manufacturing and adjustment of all the parts.


Testing the modules' approach system

Each module is mounted separately, with all the parts except the PM

CLIC: Preliminary Assembly

HF module is mounted first, with the top and bottom aluminium plates Then each module is introduced following the bronze guides fixed to the plates


Detail of one pole and how they are fixed in their nominal position using fibre gauges

Full assembly without PM

CLIC: Assembly with PM

The PM blocks are introduced using a POM box attached to the yoke

...that have to be redesigned due to the huge forces involved This is already implemented for VADER

CLIC: Assembly with PM

Magnetic measurements are done after each PM is inserted. Low precision but necessary to assure the correct PM assembly

Once each module has all the magnets in, the controlled approach starts

The process is repeated with each module until the assembly is completed

