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Motivation




Magnetic Field Errors

" detrimental to machine performance " many origins
" excite resonances " magnet fabrication errors
® reduce dynamic aperture ® misalignments
" cause beam loss " power supply failures

power corrector magnets for compensation

Require location and magnitude of linear & non-linear field errors!
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Established Field Error Identification Procedures

Linear Optics from Closed Orbits
(LOCO) [1]

® |inear machine model from orbit
response

® fit model to measured orbit response
® find dipole & quadrupole errors

* widely employed since 1996

" non-linear field errors not covered
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Established Field Error Identification Procedures

Linear Optics from Closed Orbits non-linear optics estimation

(LOCO) [1]
linear machine model from orbit * different approaches demonstrated
response " resonance-driving terms [2]
fit model to measured orbit response ) ?ﬁ']l:gr,‘vel?r[gime response matrix
find dipole & quadrupole errors * Nonlinear optics from off-energy
widely employed since 1996 closed orbits (NOECO) [4]

" time demanding measurements

" require structured measurement data
(e.g. bumps around machine)

" require accurate linear machine model
in advance
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SIS18 @ GSI

verticallyUpwards

= 216 m long synchrotron, 03 0.30 D
accelerate heavy ions from gon XXX Bl 0.295
protons to uranium 5 [ axxxx o S .

* injector of the future FAIR [ 028 8 ’
facility / SIS100 synchrotron 020 T ————| .

* nominal optics model gy PO O

" tunes shifted o o Measured dynamic
AQy, =1x 102 solid line: MAD-X prediction, tunescan in SIS18,
® discrepancies in chromaticity crosses: measurements vertically upwards.

A&, =013, AE, = 0.38
® 3rd order resonances present
® indicates sextupole errors
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SIS18 @ GSI

verticallyUpwards

= 216 m long synchrotron, 03 0.30 D
accelerate heavy ions from gon XXX Bl 0.295
protons to uranium 5 [ axxxx o S .

* injector of the future FAIR [ 028 8 ’
facility / SIS100 synchrotron 020 T ————| .

* nominal optics model gy PO O

" tunes shifted o o Measured dynamic
AQy, =1x 102 solid line: MAD-X prediction, tunescan in SIS18,
® discrepancies in chromaticity crosses: measurements vertically upwards.

A&, =013, AE, = 0.38
® 3rd order resonances present
® indicates sextupole errors

Use DLMN to identify source of discrepancies
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Motivation

" improved & accurate optics description
— step towards digital twin

= efficient on beamtime
" independent from existing linear optics model

Propose: Deep Lie-Map Networks (DLMN) [5, 6]
" identify sextupole errors from trajectory data
" machine-learning based approach
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Probe optics with beam centroids oscillations

Approach
Identify magnetic field errors from

observed centroid trajectories - S
Steps E
1. compare measurements to model g
predictions §
2. quantify difference by loss £ g
3. minimize £ by varying multipole 2 e
strengths Of mOdeI 1 2 3 4 5 6 7 8 9 1011 12

no. Beam Position Monitor

— Changes to DLMN degrees of freedom reveal field errors
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Deep Lie Map Networks

Self-implemented tracking code with automatic differentiation

" elements modeled in hard-edge
approximation
— piece-wise constant Hamiltonian
" eqn. of motion solved in thin-lens
approximation
® discrete updates to position &
momentum
(drifts & kicks)
® exact drifts, no truncation
" transverse magnetic fields up to
arbitrary order

* benchmarked against MAD-X [7],
SixTrackLib [8]
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Deep Lie Map Networks

Self-implemented tracking code with automatic differentiation

" elements modeled in hard-edge " concatenation of differentiable maps
approximation * enable differentiation of whole
— piece-wise constant Hamiltonian tracking model w.r.t. multipole
* eqn. of motion solved in thin-lens strengths or
approximation " compute ok, with k,"j i-th multipole
® discrete updates to position & of j-th magnet
momentum " high-dimensional optimization problem

(drifts & kicks)

® exact drifts, no truncation

" transverse magnetic fields up to
arbitrary order

* benchmarked against MAD-X [7],
SixTrackLib [8]

® derivatives from automatic
differentiation
— gradient-based optimization

= ‘% cover several orders of
1)
magnitude
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Initial Condition For Tracking

i
( condition

/ magnetic multipole

—
components

DLMN Model

—

trajectory

October 10, 2025

Beam deflection from stationary state:

APx,y = fs BI;C;erds

Momentum change via RF frequency
mismatch:

()
2 ac fef

Initial condition for DLMN tracking:

7y = [Oa APX; 0, Apya 0, 5]

Deep Lie-Map Networks



Simulated Training Results

Akl [m~1]

107104
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no. epoch

0 1000 2000
no. epoch

Akl [m~2]

0 1000 2000

no. epoch

0 1000 2000
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Normal distributed quadrupole &
sextupole errors

" convergence of magnetic
multipole components

® quadrupole strengths
Ak L
" sextupole strengths AkyL

= correct prediction of

" tunes Q.
" chromaticities &,

Only three trajectories required!
§€[-1x1073,0,1x 1073]
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Chromatic & Amplitude Detuning

" motion of beam centroid differs from single particle motion
" detuning limits resolution magnetic field errors

® beam emittance — amplitude detuning
* momentum spread — chromatic detuning
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Reconstructed Tune & Chromaticity
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DLMN predicted tunes & chromaticities consistent within measurement uncertainty
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Predicted Beta Function

1.10 A

1.05 A1

1.00 A

rel. hor. beta B,/(Bx)

0.95 4

- DLMN
- LOCO

exp.

no. sector

Default SIS18 doublet optics during

Relative beta function

" s predicted in good agreement
between
® Deep Lie Map Networks
* LOCO-fit of orbit response matrix
" spectral analysis of BPM
turn-by-turn data
" s local quantity depending on
quadrupole error distribution
— demonstrates that field errors can be
quantified & localized

magnetic flattop, (Qx, Qy)=(4.29, 3.29)
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Predicted Nonlinear Optics

2.0 1 --&- DLMN - linear only
--&-- DLMN - nonlinear )
| exp.
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Observe sextupoles via resonance
driving terms

" f3g00 is dominant at working point
(Q«, Qy)=(4.29, 3.29)
Chromaticity corrected in control
system,
afterwards turn-off single sextupole in
Sector 9

DLMN predicted f3099 matches
analysis of BPM spectra




Simulated Static Tunescans

® DLMN training results yield effective

complete DLMN error model .
100 accelerator model in terms of

3.50
> . .
S 95 magnetic multipole components
c — - . .
3 333 90 = refm_ed optics model enables further
o g5 © use in
2 2 simulation tools & tracking codes
o} 5 . . . .
e 3y 80 3 * one application: simulating tune scans
‘g 75

3.00 e —— 70 — ana-lyze. sources of resonance

400 4.17 433 4.50 excitation

matched hor. tune Qx — compute compensation schemes
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Conclusion

Deep Lie Map Networks
® new approach to identify magnetic
field errors
— key observable: centroid oscillations
in time-domain
" identify linear & nonlinear magnetic
field errors in parallel
— step towards digital twin
" time-efficient
— only three trajectories required
" vyields optics model in terms of
physical quantities
— enables follow-up usage in analytical
and numerical studies
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Conclusion

Deep Lie Map Networks

" new approach to identify magnetic
field errors
— key observable: centroid oscillations
in time-domain
" identify linear & nonlinear magnetic
field errors in parallel
— step towards digital twin

" time-efficient

— only three trajectories required
" vyields optics model in terms of
physical quantities
— enables follow-up usage in analytical
and numerical studies

Proof-of-Principle Experiment
® recover linear optics
" single trajectory
" recover tunes, beta-functions, phase
advances, dispersion
" recover second order optics
" three trajectories
® chromaticities, resonance driving
term f3000

" method applicable under realistic
conditions at hadron synchrotron




Outlook

Application to optics reconstruction in LHC
" investigate large beta-beating / errors in beam energy [10]
= application to in arcs in single-pass mode
" replace single-turn kicker magnet with AC dipole excitation

Investigate forward-mode automatic differentiation
* Generalized Truncated Power Series Algebra (GTPSA)

= efficient generalization of forward-mode AD to high number of input variables
® reduced memory consumption as no intermediate results need to be kept

* implemented in MAD-NG / PyMAD-NG [11]
® fully benchmarked against PTC [12]
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Thank you for your Attention!

Deep Lie Map Networks Proof-of-Principle Experiment
" new approach to identify magnetic ® recover linear optics
field errors " single trajectory

" recover tunes, beta-functions, phase

— key observable: centroid oscillations
advances, dispersion

in time-domain
® identify linear & nonlinear magnetic " recover second order optics

field errors in parallel * three trajectories
— step towards digital twin ® chromaticities, resonance driving

* time-efficient term f3000
— only three trajectories required " method applicable under realistic
* vyields optics model in terms of conditions at hadron synchrotron

physical quantities
— enables follow-up usage in analytical
and numerical studies
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Setup

Trajectory measurement Beam properties
" vary momentum = jon: Au®t, 150 MeVu~?!
§€[-1x10730,1x 107 " Emittances ;oS = 20 pm,
* record at magnetic flattop, 5.5Tm ef/::]rgrsm = 4pm

* Momentum Spread o5 = 4.8 x 10~%

< 3 QO 1 1o 1 T 1
£°3 I s 1S I = I g I
2 5 z 3 : : g : BPM noise : s - :
[J) =] = > f ©
= = £ 12 1 analysis 1S R 1
3 o 1 12 [ ISl
O q v 1 E 1 ¢ o 19
£ z 1 19 2419
o = 1+ 1 Q (] [
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time [ms]
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Determination BPM Noise Level

3500 - = " beam in equilibrium state / analyze
3000 £ position over 25000 turns
T B ® residual fluctuations follow normal
g 2500 1 — distributi
3 0 1 3 4 IStrIbUtIOﬂ
= 2000 1 no. turn [10°] " mean: closed orbit
w
2 1500 - 9 ] = standard deviation: BPM noise level
8 :Z " no significant deviation from normal
S 1000 - £ 4 distribution according to
500 — Shapiro-Wilk test
0 017 033 05 . K
freq. [turn~!] = white noise
0 T T T T
1.6 1.8 2.0 22 * flat frequency spectrum
centroid position (x) [mm] * no residual synchrotron oscillations
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BPM Noise Level vs. Current

horizontal plane vertical plane
301 611073 30 ] 61073
€ | —-_—10 T ] = 10
5 10.0 { mm 0.0 5 10.0 4 0.0
= {mm 10 " 3 ] =10
— g iy — ]
— 3 4 — 3 4
[J] ] [} 4
0 0
2 1.04 - - 2 1.04-- - -
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¢: fractional momentum offset

induced by rf frequency mismatch, dpfrev setting in Paramodi




BPM Noise Level per Sector
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Spectral Noise Floor
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Possible Resonances
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