


Deep Lie-Map Networks
A novel Approach to Infer Nonlinear Synchrotron Optics from Beam Oscillations
Conrad Caliari

October 10, 2025 Deep Lie-Map Networks 2



Motivation
Deep Lie-Map Networks
Proof-of-Principle Experiment
Conclusion & Outlook

October 10, 2025 Deep Lie-Map Networks 3



Motivation

October 10, 2025 Deep Lie-Map Networks 4



Magnetic Field Errors

• detrimental to machine performance
• excite resonances
• reduce dynamic aperture
• cause beam loss

• many origins
• magnet fabrication errors
• misalignments
• power supply failures

power corrector magnets for compensation

Require location and magnitude of linear & non-linear field errors!
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Established Field Error Identification Procedures
Linear Optics from Closed Orbits

(LOCO) [1]
• linear machine model from orbit

response
• fit model to measured orbit response
• find dipole & quadrupole errors
• widely employed since 1996
• non-linear field errors not covered

non-linear optics estimation

• different approaches demonstrated
• resonance-driving terms [2]
• non-linear tune response matrix

(NTRM) [3]
• Nonlinear optics from off-energy

closed orbits (NOECO) [4]
• time demanding measurements
• require structured measurement data

(e.g. bumps around machine)
• require accurate linear machine model

in advance
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SIS18 @ GSI

• 216 m long synchrotron,
accelerate heavy ions from
protons to uranium

• injector of the future FAIR
facility / SIS100 synchrotron

• nominal optics model
• tunes shifted

∆Qx ,y = 1 × 10−2
• discrepancies in chromaticity

∆ξx = 0.13, ∆ξy = 0.38
• 3rd order resonances present

• indicates sextupole errors
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Motivation

• improved & accurate optics description
=⇒ step towards digital twin

• efficient on beamtime
• independent from existing linear optics model

Propose: Deep Lie-Map Networks (DLMN) [5, 6]
• identify sextupole errors from trajectory data
• machine-learning based approach
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Deep Lie-Map Networks
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Probe optics with beam centroids oscillations
Approach

Identify magnetic field errors from
observed centroid trajectories

Steps
1. compare measurements to model

predictions
2. quantify difference by loss L
3. minimize L by varying multipole

strengths of model 1 2 3 4 5 6 7 8 9 10 11 12
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Training

Measurement

→ Changes to DLMN degrees of freedom reveal field errors
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Deep Lie Map Networks
Self-implemented tracking code with automatic differentiation

• elements modeled in hard-edge
approximation

→ piece-wise constant Hamiltonian
• eqn. of motion solved in thin-lens

approximation
• discrete updates to position &

momentum
(drifts & kicks)

• exact drifts, no truncation
• transverse magnetic fields up to

arbitrary order
• benchmarked against MAD-X [7],

SixTrackLib [8]

• concatenation of differentiable maps
• enable differentiation of whole

tracking model w.r.t. multipole
strengths

• compute ∂L
∂ki,j

with ki,j i-th multipole
of j-th magnet

• high-dimensional optimization problem

• derivatives from automatic
differentiation

→ gradient-based optimization
•

∣∣∣ ∂L
∂ki,j

∣∣∣ cover several orders of
magnitude

→ adopt training algorithms from
machine learning community, e.g.
ADAM [9]
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Initial Condition For Tracking

DLMN Modelmagnetic multipole
components trajectory

initial
condition

• Beam deflection from stationary state:

∆px ,y =
∫

s Bkickerds
Bρ

• Momentum change via RF frequency
mismatch:

δ =
( 1

γ2 − αC

) ∆frf
frf

• Initial condition for DLMN tracking:

z⃗0 = [0, ∆px , 0, ∆py , 0, δ]
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Simulated Training Results
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Normal distributed quadrupole &
sextupole errors

• convergence of magnetic
multipole components

• quadrupole strengths
∆k1L

• sextupole strengths ∆k2L

• correct prediction of
• tunes Qx ,y• chromaticities ξx ,y

Only three trajectories required!
δ ∈ [−1 × 10−3, 0, 1 × 10−3]
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Chromatic & Amplitude Detuning
• motion of beam centroid differs from single particle motion
• detuning limits resolution magnetic field errors

• beam emittance → amplitude detuning
• momentum spread → chromatic detuning
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Proof-of-Principle Experiment
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Reconstructed Tune & Chromaticity
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DLMN predicted tunes & chromaticities consistent within measurement uncertainty
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Predicted Beta Function
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Relative beta function
• is predicted in good agreement

between
• Deep Lie Map Networks
• LOCO-fit of orbit response matrix
• spectral analysis of BPM

turn-by-turn data
• is local quantity depending on

quadrupole error distribution
→ demonstrates that field errors can be

quantified & localized
Default SIS18 doublet optics during magnetic flattop, (Qx , Qy )=(4.29, 3.29)
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Predicted Nonlinear Optics
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• Observe sextupoles via resonance
driving terms

• f3000 is dominant at working point
(Qx , Qy )=(4.29, 3.29)

• Chromaticity corrected in control
system,
afterwards turn-off single sextupole in
Sector 9

• DLMN predicted f3000 matches
analysis of BPM spectra
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Simulated Static Tunescans
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• DLMN training results yield effective
accelerator model in terms of
magnetic multipole components

• refined optics model enables further
use in
simulation tools & tracking codes

• one application: simulating tune scans

→ analyze sources of resonance
excitation

→ compute compensation schemes
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Conclusion & Outlook
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Conclusion
Deep Lie Map Networks

• new approach to identify magnetic
field errors

→ key observable: centroid oscillations
in time-domain

• identify linear & nonlinear magnetic
field errors in parallel

→ step towards digital twin
• time-efficient

→ only three trajectories required
• yields optics model in terms of

physical quantities
→ enables follow-up usage in analytical

and numerical studies

Proof-of-Principle Experiment
• recover linear optics

• single trajectory
• recover tunes, beta-functions, phase

advances, dispersion
• recover second order optics

• three trajectories
• chromaticities, resonance driving

term f3000
• method applicable under realistic

conditions at hadron synchrotron
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Outlook
Application to optics reconstruction in LHC

• investigate large beta-beating / errors in beam energy [10]
• application to in arcs in single-pass mode
• replace single-turn kicker magnet with AC dipole excitation

Investigate forward-mode automatic differentiation
• Generalized Truncated Power Series Algebra (GTPSA)

• efficient generalization of forward-mode AD to high number of input variables
• reduced memory consumption as no intermediate results need to be kept

• implemented in MAD-NG / PyMAD-NG [11]
• fully benchmarked against PTC [12]
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Thank you for your Attention!
Deep Lie Map Networks

• new approach to identify magnetic
field errors

→ key observable: centroid oscillations
in time-domain

• identify linear & nonlinear magnetic
field errors in parallel

→ step towards digital twin
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→ only three trajectories required
• yields optics model in terms of

physical quantities
→ enables follow-up usage in analytical

and numerical studies

Proof-of-Principle Experiment
• recover linear optics

• single trajectory
• recover tunes, beta-functions, phase

advances, dispersion
• recover second order optics

• three trajectories
• chromaticities, resonance driving

term f3000
• method applicable under realistic

conditions at hadron synchrotron
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Setup
Trajectory measurement

• vary momentum
δ ∈

[
−1 × 10−3, 0, 1 × 10−3]

• record at magnetic flattop, 5.5 T m

Beam properties
• ion: Au65+, 150 MeV u−1

• Emittances ϵ4-rms
x ,norm = 20 µm,

ϵ4-rms
y ,norm = 4 µm

• Momentum Spread σδ = 4.8 × 10−4
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Determination BPM Noise Level
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position over 25 000 turns
• residual fluctuations follow normal

distribution
• mean: closed orbit
• standard deviation: BPM noise level
• no significant deviation from normal

distribution according to
Shapiro-Wilk test

• white noise
• flat frequency spectrum
• no residual synchrotron oscillations
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BPM Noise Level vs. Current

δ: fractional momentum offset
induced by rf frequency mismatch, dpfrev setting in Paramodi
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BPM Noise Level per Sector

1 2 3 4 5 6 7 8 9 10 11 12
no. sector

100

200

300

400

500

st
d.

 d
ev

. p
os

iti
on

 [
m

] plane
x
y

October 10, 2025 Deep Lie-Map Networks 4



Spectral Noise Floor
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Possible Resonances
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