

Deep Lie-Map Networks
A novel Approach to Infer Nonlinear Synchrotron Optics from Beam Oscillations Conrad Caliari



Motivation

Deep Lie-Map Networks

Proof-of-Principle Experiment

Conclusion & Outlook



### Motivation



### Magnetic Field Errors

- detrimental to machine performance
  - excite resonances
  - reduce dynamic aperture
  - cause beam loss

- many origins
  - magnet fabrication errors
  - misalignments
  - power supply failures

power corrector magnets for compensation

Require location and magnitude of linear & non-linear field errors!



### Established Field Error Identification Procedures

# Linear Optics from Closed Orbits (LOCO) [1]

- linear machine model from orbit response
- fit model to measured orbit response
- find dipole & quadrupole errors
- widely employed since 1996
- non-linear field errors not covered



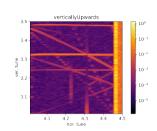
### Established Field Error Identification Procedures

## Linear Optics from Closed Orbits (LOCO) [1]

- linear machine model from orbit response
- fit model to measured orbit response
- find dipole & quadrupole errors
- widely employed since 1996
- non-linear field errors not covered

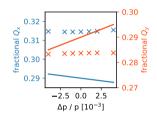
#### non-linear optics estimation

- different approaches demonstrated
  - resonance-driving terms [2]
  - non-linear tune response matrix (NTRM) [3]
  - Nonlinear optics from off-energy closed orbits (NOECO) [4]
- time demanding measurements
- require structured measurement data (e.g. bumps around machine)
- require accurate linear machine model in advance

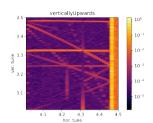



### **SIS18 @ GSI**

- 216 m long synchrotron, accelerate heavy ions from protons to uranium
- injector of the future FAIR facility / SIS100 synchrotron
- nominal optics model
  - tunes shifted  $\Delta Q_{\rm x,v} = 1 imes 10^{-2}$
  - discrepancies in chromaticity  $\Delta \xi_x = 0.13, \ \Delta \xi_v = 0.38$





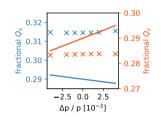

### SIS18 @ GSI

- 216 m long synchrotron, accelerate heavy ions from protons to uranium
- injector of the future FAIR facility / SIS100 synchrotron
- nominal optics model
  - tunes shifted  $\Delta Q_{\rm x,v} = 1 \times 10^{-2}$
  - discrepancies in chromaticity  $\Delta \xi_x = 0.13, \ \Delta \xi_y = 0.38$
- 3rd order resonances present
  - indicates sextupole errors

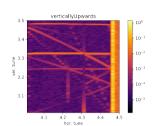


solid line: MAD-X prediction, crosses: measurements




Measured dynamic tunescan in SIS18, vertically upwards.




### **SIS18 @ GSI**

- 216 m long synchrotron, accelerate heavy ions from protons to uranium
- injector of the future FAIR facility / SIS100 synchrotron
- nominal optics model
  - tunes shifted  $\Delta \mathit{Q}_{\mathsf{x},\mathsf{v}} = 1 imes 10^{-2}$
  - discrepancies in chromaticity  $\Delta \xi_x = 0.13, \ \Delta \xi_v = 0.38$
- 3rd order resonances present
  - indicates sextupole errors

es present pole errors Use DLMN to identify source of discrepancies



solid line: MAD-X prediction, crosses: measurements



Measured dynamic tunescan in SIS18, vertically upwards.



#### Motivation

- improved & accurate optics description
  - ⇒ step towards digital twin
- efficient on beamtime
- independent from existing linear optics model

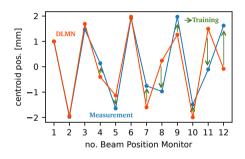
Propose: Deep Lie-Map Networks (DLMN) [5, 6]

- identify sextupole errors from trajectory data
- machine-learning based approach



### Deep Lie-Map Networks




### Probe optics with beam centroids oscillations

#### Approach

Identify magnetic field errors from observed centroid trajectories

#### Steps

- compare measurements to model predictions
- 2. quantify difference by loss  $\mathcal{L}$
- 3. minimize  $\mathcal{L}$  by varying multipole strengths of model



 $\rightarrow$  Changes to DLMN degrees of freedom reveal field errors



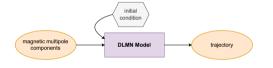
### Deep Lie Map Networks

Self-implemented tracking code with automatic differentiation

- elements modeled in hard-edge approximation
  - $\rightarrow$  piece-wise constant Hamiltonian
- eqn. of motion solved in thin-lens approximation
  - discrete updates to position & momentum (drifts & kicks)
  - exact drifts, no truncation
  - transverse magnetic fields up to arbitrary order
- benchmarked against MAD-X [7], SixTrackLib [8]



### Deep Lie Map Networks


#### Self-implemented tracking code with automatic differentiation

- elements modeled in hard-edge approximation
  - → piece-wise constant Hamiltonian
- eqn. of motion solved in thin-lens approximation
  - discrete updates to position & momentum (drifts & kicks)
  - exact drifts, no truncation
  - transverse magnetic fields up to arbitrary order
- benchmarked against MAD-X [7], SixTrackLib [8]

- concatenation of differentiable maps
  - enable differentiation of whole tracking model w.r.t. multipole strengths
  - compute  $\frac{\partial \mathcal{L}}{\partial k_{i,j}}$  with  $k_{i,j}$  i-th multipole of j-th magnet
- high-dimensional optimization problem
  - derivatives from automatic differentiation
    - ightarrow gradient-based optimization
  - $\left| \frac{\partial \mathcal{L}}{\partial k_{i,j}} \right|$  cover several orders of magnitude

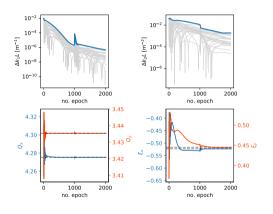


### Initial Condition For Tracking



Beam deflection from stationary state:

$$\Delta p_{x,y} = rac{\int_{s} B_{ ext{kicker}} ds}{B 
ho}$$


• Momentum change via RF frequency mismatch:

$$\delta = \left(\frac{1}{\gamma^2} - \alpha_C\right) \frac{\Delta f_{\mathsf{rf}}}{f_{\mathsf{rf}}}$$

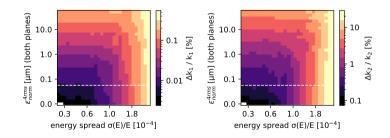
Initial condition for DLMN tracking:

$$\vec{z}_0 = [0, \Delta p_x, 0, \Delta p_y, 0, \delta]$$

### Simulated Training Results



Normal distributed quadrupole & sextupole errors

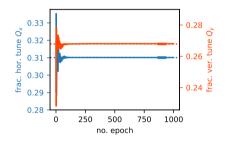

- convergence of magnetic multipole components
  - quadrupole strengths  $\Delta k_1 L$
  - sextupole strengths  $\Delta k_2 L$
- correct prediction of
  - tunes  $Q_{x,y}$
  - chromaticities  $\xi_{x,y}$

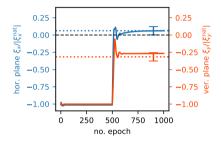
Only three trajectories required!  $\delta \in [-1 \times 10^{-3}, 0, 1 \times 10^{-3}]$ 



### Chromatic & Amplitude Detuning

- motion of beam centroid differs from single particle motion
- detuning limits resolution magnetic field errors
  - beam emittance → amplitude detuning
  - momentum spread → chromatic detuning

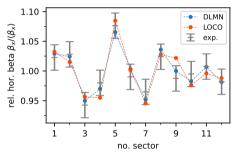



### Proof-of-Principle Experiment



### Reconstructed Tune & Chromaticity



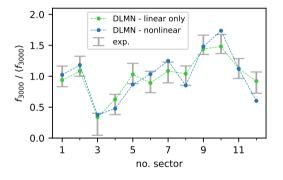



DLMN predicted tunes & chromaticities consistent within measurement uncertainty



#### Predicted Beta Function

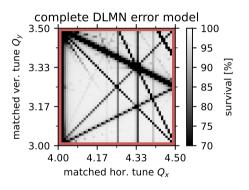



#### Relative beta function

- is predicted in good agreement between
  - Deep Lie Map Networks
  - LOCO-fit of orbit response matrix
  - spectral analysis of BPM turn-by-turn data
- is local quantity depending on quadrupole error distribution
  - → demonstrates that field errors can be quantified & localized

Default SIS18 doublet optics during magnetic flattop,  $(Q_x, Q_y) = (4.29, 3.29)$ 




### Predicted Nonlinear Optics



- Observe sextupoles via resonance driving terms
  - $f_{3000}$  is dominant at working point  $(Q_x, Q_y) = (4.29, 3.29)$
- Chromaticity corrected in control system, afterwards turn-off single sextupole in Sector 9
- DLMN predicted f<sub>3000</sub> matches analysis of BPM spectra



#### Simulated Static Tunescans



- DLMN training results yield effective accelerator model in terms of magnetic multipole components
- refined optics model enables further use in simulation tools & tracking codes
- one application: simulating tune scans
  - → analyze sources of resonance excitation
  - ightarrow compute compensation schemes



### Conclusion & Outlook



### Conclusion

#### Deep Lie Map Networks

- new approach to identify magnetic field errors
  - → key observable: centroid oscillations in time-domain
- identify linear & nonlinear magnetic field errors in parallel
  - → step towards digital twin
- time-efficient
  - → only three trajectories required
- yields optics model in terms of physical quantities
  - → enables follow-up usage in analytical and numerical studies



#### Conclusion

#### Deep Lie Map Networks

- new approach to identify magnetic field errors
  - → key observable: centroid oscillations in time-domain
- identify linear & nonlinear magnetic field errors in parallel
  - → step towards digital twin
- time-efficient
  - $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$  only three trajectories required
- yields optics model in terms of physical quantities
  - → enables follow-up usage in analytical and numerical studies

#### Proof-of-Principle Experiment

- recover linear optics
  - single trajectory
  - recover tunes, beta-functions, phase advances, dispersion
- recover second order optics
  - three trajectories
  - chromaticities, resonance driving term  $f_{3000}$
- method applicable under realistic conditions at hadron synchrotron



### Outlook

Application to optics reconstruction in LHC

- investigate large beta-beating / errors in beam energy [10]
- application to in arcs in single-pass mode
- replace single-turn kicker magnet with AC dipole excitation

Investigate forward-mode automatic differentiation

- Generalized Truncated Power Series Algebra (GTPSA)
  - efficient generalization of forward-mode AD to high number of input variables
  - reduced memory consumption as no intermediate results need to be kept
- implemented in MAD-NG / PyMAD-NG [11]
  - fully benchmarked against PTC [12]



## References (I)

- [1] J. Safranek, "Experimental determination of storage ring optics using orbit response measurements," *Nucl. Instrum. Meth. A*, vol. 388, pp. 27–36, 1997.
- [2] R. Tomás, M. Bai, R. Calaga, W. Fischer, A. Franchi, and G. Rumolo, "Measurement of global and local resonance terms," *Physical Review Special Topics-Accelerators and Beams*, vol. 8, no. 2, p. 024001, 2005.
- [3] A. Parfenova and G. Franchetti, "Experimental benchmarking of nonlinear tune response matrix with several controlled sextupolar errors," *Nucl. Instrum. Meth. A*, vol. 646, pp. 7–11, 2011.
- [4] D. K. Olsson, A. Andersson, and M. Sjöström, "Nonlinear optics from off-energy closed orbits," Phys. Rev. Accel. Beams, vol. 23, p. 102803, Oct 2020.
- [5] C. Caliari, A. Oeftiger, and O. Boine-Frankenheim, "Identification of magnetic field errors in synchrotrons based on deep lie map networks," *Phys. Rev. Accel. Beams*, vol. 26, p. 064601, Jun 2023.



### References (II)

- [6] C. Caliari, A. Oeftiger, and O. Boine-Frankenheim, "Beam-based identification of magnetic field errors in a synchrotron using deep lie map networks," *Phys. Rev. Accel. Beams*, vol. 28, p. 024601, Feb 2025.
- [7] R. De Maria, L. Deniau, J. Dilly, J. M. Gray, A. Latina, F. Schmidt, P. Skowronski, J. S. Berg, and T. Gläßle, "Status of MAD-X V5.09," *JACOW IPAC*, vol. 2023, p. WEPL101, 2023.
- [8] M. Schwinzerl, R. De Maria, K. Paraschou, H. Bartosik, G. ladarola, and A. Oeftiger, "Optimising and Extending A Single-Particle Tracking Library For High Parallel Performance," 2021.
- [9] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," 2014.
- [10] J. M. Gray, "Beam energy discrepancy: What can the optics mismatch reveal?," in 15th HL-LHC Collaboration Meeting, CERN, (CERN, Geneva, Switzerland), October 2025.
  Talk, HL-LHC Collaboration Meeting, 1 October 2025.



### References (III)

- [11] L. Deniau, "MAD-NG, a standalone multiplatform tool for linear and non-linear optics design and optimisation," 2025.
- [12] P. Skowronski, F. Schmidt, and E. Forest, "Advances in MAD-X using PTC," in 2007 IEEE Particle Accelerator Conference (PAC), pp. 3381–3383, 2007.



### Thank you for your Attention!

#### Deep Lie Map Networks

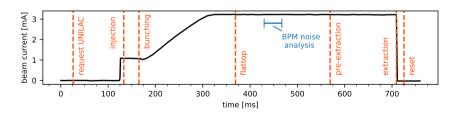
- new approach to identify magnetic field errors
  - ightarrow key observable: centroid oscillations in time-domain
- identify linear & nonlinear magnetic field errors in parallel
  - $\rightarrow$  step towards digital twin
- time-efficient
  - $\,\,
    ightarrow\,$  only three trajectories required
- yields optics model in terms of physical quantities
  - ightarrow enables follow-up usage in analytical and numerical studies

#### Proof-of-Principle Experiment

- recover linear optics
  - single trajectory
  - recover tunes, beta-functions, phase advances, dispersion
- recover second order optics
  - three trajectories
  - chromaticities, resonance driving term  $f_{3000}$
- method applicable under realistic conditions at hadron synchrotron

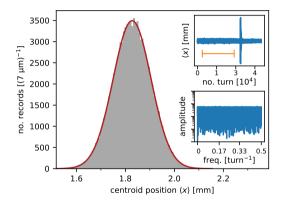





### Setup

#### Trajectory measurement

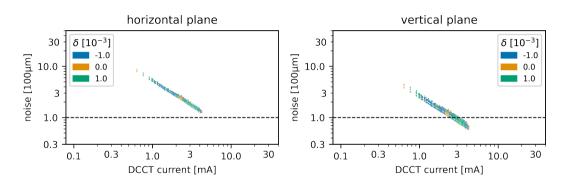
- vary momentum  $\delta \in \left[-1 \times 10^{-3}, 0, 1 \times 10^{-3}\right]$
- record at magnetic flattop, 5.5 T m


#### Beam properties

- ion:  $Au^{65+}$ , 150 MeV  $u^{-1}$
- Emittances  $\epsilon_{x, {
  m norm}}^{4-{
  m rms}}=20\,{
  m \mu m},$   $\epsilon_{y, {
  m norm}}^{4-{
  m rms}}=4\,{
  m \mu m}$
- Momentum Spread  $\sigma_{\delta} = 4.8 \times 10^{-4}$



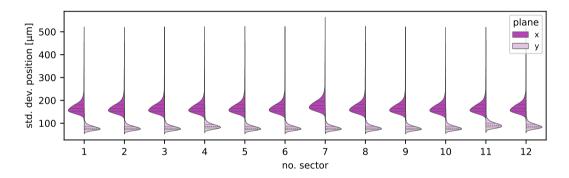



#### Determination BPM Noise Level



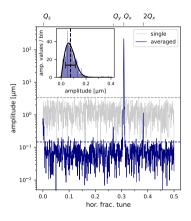
- beam in equilibrium state / analyze position over 25 000 turns
- residual fluctuations follow normal distribution
  - mean: closed orbit
  - standard deviation: BPM noise level
  - no significant deviation from normal distribution according to Shapiro-Wilk test
- white noise
  - flat frequency spectrum
  - no residual synchrotron oscillations




#### BPM Noise Level vs. Current

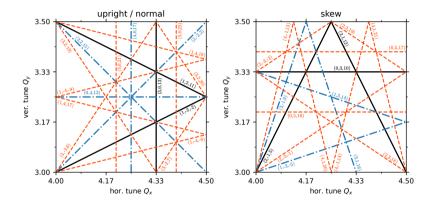


 $\delta$ : fractional momentum offset induced by rf frequency mismatch, dpfrev setting in Paramodi




### BPM Noise Level per Sector






### Spectral Noise Floor





### Possible Resonances



