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• Very non-linear (NL) machine

⇒ Large NL errors from superconducting
dipoles

⇒ Also from experimental IP (due to large β
in triplets)

⇒ Strong lattice sextupoles (MS) & Landau
octupole (MO) magnets to correct chroma
& for Landau damping respectively

• Why study NL optics in LHC?
⇒ Potential impact on beam quality
⇒ Improve LHC modelling & understanding of
dynamics ∴ impacting operation (OP) and
design of future colliders
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NL studies

• NL studies have been a priority in LHC
studies since the start

• There have been lots of studies including
measurement of observables such as dy-
namic aperture, amplitude detuning and
non-linear chromaticity
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Resonances

• Often care about particular resonances
since ⇒ emittance growth & particle loss

• One of the most important properties of
the machine is strength of certain reso-
nances close to working point (WP)

• The strength of a resonance can be char-
acterised by a resonance driving term
(RDT)
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Measuring RDTs
• After using a kicker to excite the beam, Turn-by-Turn (TbT) position data can then be logged
using ∼500 BPMs per beam around ring

• Resonances distort phase-space

• The phase-space distortion shows up as peaks in the TbT frequency spectrum (produced through
harmonic analysis on TbT data)

• Amplitude of peak ∝ how much particular resonance perturbs the beam ⇐ an RDT
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Resonances and RDTs

Resonance RDT Magnet type
Qx + 2Qy f1020 b3

3Qy f0030 a3
2Qx − 2Qy f2002 b4

4Qx f4000 b4
4Qy f0040 b4

−Qx + 4Qy f0140 b5
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Forced RDTs
• Originally, RDTs were measured by using a kicker magnet to excite the beam

• Quite challenging since the signal rapidly decoheres

• TbT acquisition can also be taken by exciting an AC dipole (ACD) for thou-
sands of turns which means...

⇒ A good spectra

⇒ Exact frequency of lines known

⇒ Can kick repeatedly due to adiabatic excitations
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How do we use RDTs in the LHC?

• E.g. 1: Benchmarking b4 RDT

• E.g. 2: Correction of b3 RDT

• E.g. 3: Creating new higher order RDT correction method

• E.g. 4: Long-Range Beam-Beam-driven RDT correction
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E.g. 1: Benchmarking b4 RDT
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Landau Octupoles
• Reminder: Landau octupoles are used for the purpose of Landau damping
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b4 RDT | Improving optics control in the LHC with forced RDTs | Landau Octupoles

Landau Octupoles
• Reminder: Landau octupoles are used for the purpose of Landau damping

⇒ This effect occurs due to tune spread & is in the interest of overall stability
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b4 benchmarking
• In 2023, a correction scheme was introduced @ injection energy to compensate oc-
tupolar RDTs driven by the Landau octupoles (MO)

• To check this was working as expected benchmarking of measurements was required,
looking @ f2002 RDT response to MO powering

⇒ Found that RDT amplitude shows a large discrepancy, especially for LHCB2...

• Is it real? Could an MO circuit be faulty...?

LHCB1 LHCB2
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b4 benchmarking

• To better understand error - shall look @ shifts to real/imaginary parts of RDT caused
by MO powering (since it gives a clearer picture of direction)

• This shows that actually discrepancy for LHCB1 > LHCB2 ⇒ show just LHCB1

• Need to find source since accurate modelling of octupolar resonances needed for many
different studies...

LHCB1 LHCB2
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Finding the b4 error source
• Perhaps an analysis tools issue ∴ tested another circuit @ top energy

⇒ Simulation matched measurement

• Powering some of the individual MO circuits showed no discrepancy...

• No discrepancy seen for all MO uniformly powered during measure-
ments in preparation of ion run (carried out @ 2.6TeV) ⇒ something sig-
nificant @ injection energy...

• Current hypothesis: hysteresis issue significant only @ injection energy for
certain MO circuits

MCOX circuit

MO from arc56

OMC 10th Low Emittance Rings Workshop Sasha Horney 14
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E.g. 2: Correction of b3 RDT
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Correction of b3 RDT

• At injection energy there are 2 main sources of b3:

• Interestingly, when looking @ TbT spectrums - largest perturbation was from normal
sextupole.

Horizontal TbT Frequency Spectrum Vertical TbT Frequency Spectrum
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• At injection energy there are 2 main sources of b3:

⇒ One of them is errors coming from superconducting dipoles - these are corrected
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⇒ The other is the lattice sextupoles (MS) - there to modulate chromaticity
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Correction of b3 RDT

• This was a surprise - resonance far from WP.

• Is it real???
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Correction of b3 RDT

• RDT magnitude constant w/ kick amplitude
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Correction of b3 RDT

• RDT magnitude constant w/ kick amplitude

⇒ LHCB1 > LHCB2 ∴ will concentrate on LHCB1
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Correction of b3 RDT

• RDT magnitude constant w/ kick amplitude

• Initially thought b3 error correction was not working properly ⇒ comparison
to simulation ⇒ good agreement w/ simulation
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Correction of b3 RDT

• RDT magnitude constant w/ kick amplitude

• Initially thought b3 error correction was not working properly ⇒ comparison
to simulation ⇒ good agreement w/ simulation

• Comparison of model w/ and w/o the MS ⇒ they were main drivers of reso-
nance
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b3 RDT | Improving optics control in the LHC with forced RDTs | Creating b3 correction

b3 correction creation
• What happens if we change lattice design to correct this RDT?

• The following approach was followed:

⇒ Matched the RDT present in the lattice to a reduced level with MS using
MAD-NG’s unique RDT matching capability

❖ Constraints were required on maximum and minimum powering

⇒ Some manual adjustments were required to not induce large chromatic
β-beating.

MAD-NG horizontal β-beating MAD-NG f1020 RDT amplitude

OMC 10th Low Emittance Rings Workshop Sasha Horney 19
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❖ Constraints were required on maximum and minimum powering

⇒ Some manual adjustments were required to not induce large chromatic
β-beating.

MAD-NG horizontal β-beating MAD-NG f1020 RDT amplitude
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b3 RDT | Improving optics control in the LHC with forced RDTs | Measuring b3 correction

Measuring b3 correction

• Measurements showed RDT reduction w/ correction

• Clear increase in kick amplitude reached w/ correction ⇒ improved forced DA

• Increase in forced DA also shown in intensity surviving plot

• Also, increased lifetime

• This was put into operation throughout 2024
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Higher order RDTs | Improving optics control in the LHC with forced RDTs |

E.g. 3: New method to locally correct higher order
errors in low-β insertion
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Higher order RDTs | Improving optics control in the LHC with forced RDTs | New RDT corr method

New method for locally correcting higher order RDTs
• V. sensitive to optics errors from IPs ∴ in HL-LHC will aim for corrections up to do-
decapole order

• For higher order RDTs (decapolar, dodecapolar & beyond) direct measurement of
RDTs is very difficult

• Correction via feed-down is a method used @ top energy, specifically end-of-squeeze, for
normal & skew sextupole corrections - enacted by correcting feed-down to tune

• This can be applied for these higher order RDTs - by correcting feed-down to ampli-
tude detuning - see J. Dilly’s paper

• While effective this is very time-consuming...

• Feed-down from higher order errors e.g. a4, b5 etc. can also result in magnitude in-
crease of lower order RDTs when crossing angles are applied on orbit

• Due to this, an alternative, explored this year for first time, was to look @ RDT feed-
down from higher order errors
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Higher order RDTs | Improving optics control in the LHC with forced RDTs | Creating the correction

Creating the new RDT correction
• In order to carry this out a new GUI was created...

• This enabled quick matching of measured RDT response to crossing angle
w/ RDT response to corrector(s) w/ crossing angle in simulation
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Higher order RDTs | Improving optics control in the LHC with forced RDTs | Measuring correction

Measuring RDT feed-down correction
• Reduced change in 3Qy as function of crossing angle using skew octupole corrector in
ATLAS insertion

• This translated to a reduction in f1012 (skew octupolar) RDT

• Saw potential decapolar error contribution feeding down to quadratic relation for nor-
mal sextupolar resonance (f1020)

• Also, see a linear variation of strength coming from 1st order feed-down from dode-
capole error & potential b7 or higher order contribution feeding down to quadratic
relation for normal decapolar resonance (f0140)
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LRBB RDT correction | Improving optics control in the LHC with forced RDTs |

E.g. 4: Long-Range Beam-Beam-driven RDT
correction

From: W. Herr

OMC 10th Low Emittance Rings Workshop Sasha Horney 25

https://cds.cern.ch/record/1982430?ln=en


LRBB RDT correction | Improving optics control in the LHC with forced RDTs | Motivation

Motivation

• Traditionally LHC optics measurements & commissioning has focussed solely on low intensity
non-colliding bunches

• Long-Range Beam-Beam (LRBB) introduces many optics perturbations & strongly drives many
resonances ⇒ e.g. issues for dynamic aperture (DA), lifetime, luminosity, collimator hierarchy
etc

• Therefore, direct beam-based studies of the impact on optics was of interest
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LRBB RDT correction | Improving optics control in the LHC with forced RDTs |LRBB optics measurements

LRBB optics measurements
• New procedure created by OP team for optics measurements w/ LRBB - first trialled in 2024
machine development (MD)

⇒ The machine is set up w/ 3 low-intensity single bunches (pilots) in 1 beam, in collision
with high-intensity bunches in other beam

❖ Having 3 pilots ⇒ comparison between bunches seeing full LR (pilot 1) to those see-
ing half LR (pilot 2) and no LR (pilot 3)

⇒ Special BPM & collimator settings required - asymmetric between 2 beams

• Standard optics measurements can then performed on the pilots without touching the high-
intensity beams

• This has also been carried out in 2025
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LRBB RDT correction | Improving optics control in the LHC with forced RDTs | Benchmarking

Benchmarking
• In order to check a simulation-based approach was appropriate it was necessary to benchmark
simulations with measurement

• 2024 direct measurement showed very good agreement w/ simulation

⇒ Model-based corrections seem appropriate

2024 LHCB2 Simulation and Measurement
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LRBB RDT correction | Improving optics control in the LHC with forced RDTs | LRBB corr creation

LRBB correction creation
• In 2025, a correction was found using similar approach to the b3 correction @
injection

⇒ Computed RDT response to inner triplet (IT) correctors using MAD-NG

⇒ Quantified change in RDT due to LRBB in Xsuite simulation

⇒ Matched the change in RDT due to LRBB (simultaneously in both beams),
using RDT response caused by IT correctors

• Solution found for main sextupole resonances close to WP - works for both
LHCB1 & LHCB2, w/ powering requirement well within what was available

From: J. Dilly’s PhD Thesis

2024 LHCB1 Simulation 2024 LHCB2 Simulation

2024 LHCB1 Simulation 2024 LHCB2 Simulation
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LHCB1 & LHCB2, w/ powering requirement well within what was available

From: J. Dilly’s PhD Thesis

2024 LHCB1 Simulation 2024 LHCB2 Simulation

2024 LHCB1 Simulation 2024 LHCB2 Simulation
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Measuring LRBB-driven RDT correction
• In 2025 MD, first test of correction was found to greatly reduce 3Qy
resonance. (no time to test normal sextupolar resonance)

• Does reducing RDT correspond to anything? Should increase lifetime...

Correction of f0030
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Conclusion

• Forced RDT studies are used routinely in LHC

• These are used for benchmarking against the models

• From this, direct corrections can be found for specific resonances

• Also, can be used to study & correct high order errors in IPs by measuring
feed-down to lower order RDTs

• Can also go beyond traditional single-particle optics to study resonances driven
by e.g. beam-beam
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| Improving optics control in the LHC with forced RDTs |

Thanks for your attention!
Any questions?
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