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LHC

+ 27km twin-ring synchrotron

= 8 FODO arcs

MQT: trim quadrupole H

MQS: skew trim quadrupole g : main dipole

MO: Landaw/ lattice octupole = MC'S: spool piece sextupole

VISCB: Iattice sextupole (normal/skew) + orbit corrector : spool piece octupole + decapole
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LHC

+ Very non-linear (NL) machine

Low & (op)
Hig ity

= Large NL errors from superconducting
dipoles

= Also from experimental IP (due to large 8

in triplets)
= Strong lattice sextupoles (MS) & Landau

octupole (MO) magnets to correct chroma
& for Landau damping respectively ALICE) |

* Why study NL optics in LHC?
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LHC

+ Very non-linear (NL) machine

= Large NL errors from superconducting
dipoles

= Also from experimental IP (due to large 8
in triplets)

= Strong lattice sextupoles (MS) & Landau
octupole (MO) magnets to correct chroma
& for Landau damping respectively

* Why study NL optics in LHC?
= Potential impact on beam quality

= Improve LHC modelling & understanding of
dynamics .. impacting operation (OP) and From: L. Stoel
design of future colliders
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NL studies

* NL studies have been a priority in LHC
studies since the start
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NL studies

* NL studies have been a priority in LHC Measured loss -

studies since the start Predicted loss —

0 . . . . .
0 2 4 6 8

10
+ There have been lots of studies including Horizontal Kick [onominal  ( From: E. Maclean

measurement of observables such as dy- H% B e, donedton =
namic aperture, amplitude detuning and
non-linear chromaticity

Surviving Intensity 30s after kick [%]

All
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Resonances

60.40 =
+ Often care about particular resonances

since = emittance growth & particle loss 035

» One of the most important properties of
the machine is strength of certain reso- o 603047
nances close to working point (WP) :

60.25

* The strength of a resonance can be char-
acterised by a resonance driving term
(RDT)
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Measuring RDTs

+ After using a kicker to excite the beam, Turn-by-Turn (TbT) position data can then be logged
using ~500 BPMs per beam around ring
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Measuring RDTs

+ After using a kicker to excite the beam, Turn-by-Turn (TbT) position data can then be logged
using ~500 BPMs per beam around ring

* Resonances distort phase-space
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Measuring RDTs

+ After using a kicker to excite the beam, Turn-by-Turn (TbT) position data can then be logged
using ~500 BPMs per beam around ring

* Resonances distort phase-space

* The phase-space distortion shows up as peaks in the TbT frequency spectrum (produced through
harmonic analysis on TbT data)
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Measuring RDTs
Measuring RDTs

+ After using a kicker to excite the beam, Turn-by-Turn (TbT) position data can then be logged
using ~500 BPMs per beam around ring

* Resonances distort phase-space

* The phase-space distortion shows up as peaks in the TbT frequency spectrum (produced through
harmonic analysis on TbT data)

* Amplitude of peak o< how much particular resonance perturbs the beam < an RDT
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Resonances and RDTs

Resonance RDT | Magnet type
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Forced RDTs

+ Originally, RDTs were measured by using a kicker magnet to excite the beam
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Forced RDTs

+ Originally, RDTs were measured by using a kicker magnet to excite the beam

+ Quite challenging since the signal rapidly decoheres
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Forced RDTs

+ Originally, RDTs were measured by using a kicker magnet to excite the beam
+ Quite challenging since the signal rapidly decoheres

* TbT acquisition can also be taken by exciting an AC dipole (ACD) for thou-
sands of turns which means...
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Forced RDTs

+ Originally, RDTs were measured by using a kicker magnet to excite the beam
+ Quite challenging since the signal rapidly decoheres

* TbT acquisition can also be taken by exciting an AC dipole (ACD) for thou-
sands of turns which means...

= A good spectra
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Forced RDTs

+ Originally, RDTs were measured by using a kicker magnet to excite the beam
+ Quite challenging since the signal rapidly decoheres

* TbT acquisition can also be taken by exciting an AC dipole (ACD) for thou-
sands of turns which means...

= A good spectra

= Exact frequency of lines known
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Forced RDTs

+ Originally, RDTs were measured by using a kicker magnet to excite the beam
+ Quite challenging since the signal rapidly decoheres

* TbT acquisition can also be taken by exciting an AC dipole (ACD) for thou-
sands of turns which means...

= A good spectra
= Exact frequency of lines known

= Can kick repeatedly due to adiabatic excitations

Sasha Horr
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How do we use RDTs in the LHC?

+ E.g. 1: Benchmarking by RDT
+ E.g. 2: Correction of b3 RDT
+ E.g. 3: Creating new higher order RDT correction method

* E.g. 4: Long-Range Beam-Beam-driven RDT correction
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E.g. 1. Benchmarking by RDT
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Landau Octupoles

* Reminder: Landau octupoles are used for the purpose of Landau damping
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Landau Octupoles

* Reminder: Landau octupoles are used for the purpose of Landau damping

= This effect occurs due to tune spread & is in the interest of overall stability
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Improving optics control in the LHC with forced RDTs by benchmarki

by benchmarking

» In 2023, a correction scheme was introduced @ injection energy to compensate oc-
tupolar RDTs driven by the Landau octupoles (MO)
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Improving optics control in the LHC with forced RDTs by benchmarki

by benchmarking

* In 2023, a correction scheme was introduced @ injection energy to compensate oc-
tupolar RDTs driven by the Landau octupoles (MO)

= Will concentrate on fg92 RDT since closest to WP
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Improving optics control in the LHC with forced RDTs by benchmarking

by benchmarking

» In 2023, a correction scheme was introduced @ injection energy to compensate oc-
tupolar RDTs driven by the Landau octupoles (MO)

* To check this was working as expected benchmarking of measurements was required,
looking @ f002 RDT response to MO powering

= Found that RDT amplitude shows a large discrepancy, especially for LHCB2...
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by benchmarking

» In 2023, a correction scheme was introduced @ injection energy to compensate oc-
tupolar RDTs driven by the Landau octupoles (MO)

* To check this was working as expected benchmarking of measurements was required,
looking @ f002 RDT response to MO powering

= Found that RDT amplitude shows a large discrepancy, especially for LHCB2...

+ Is it real? Could an MO circuit be faulty...?

LHCB1 LHCB2
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Improving optics control in the LHC with forced RDTs by benchma

by benchmarking

+ To better understand error - shall look @ shifts to real/imaginary parts of RDT caused
by MO powering (since it gives a clearer picture of direction)
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by benchmarking

+ To better understand error - shall look @ shifts to real/imaginary parts of RDT caused
by MO powering (since it gives a clearer picture of direction)

» This shows that actually discrepancy for LHCB1 > LHCB2 = show just LHCB1

LHCB2
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by benchmarking

+ To better understand error - shall look @ shifts to real/imaginary parts of RDT caused
by MO powering (since it gives a clearer picture of direction)

» This shows that actually discrepancy for LHCB1 > LHCB2 = show just LHCB1

* Need to find source since accurate modelling of octupolar resonances needed for many
different studies...
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Finding the b, error source

* Perhaps an analysis tools issue .°. tested another circuit © top energy

= Simulation matched measurement

MCOX circuit
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Improving optics control in the LHC with forced RDTs

Finding the b, error source

* Perhaps an analysis tools issue .°. tested another circuit © top energy
= Simulation matched measurement

+ Powering some of the individual MO circuits showed no discrepancy...

MO from arc56
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Improving optics control in the LHC with forced RDTs by error finding

Finding the b, error source

* Perhaps an analysis tools issue .°. tested another circuit © top energy
= Simulation matched measurement
+ Powering some of the individual MO circuits showed no discrepancy...

* No discrepancy seen for all MO uniformly powered during measure-
ments in preparation of ion run (carried out @ 2.6TeV) = something sig-
nificant @ injection energy...
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Improving optics control in the LHC with forced RDTs by error finding

Finding the b, error source
* Perhaps an analysis tools issue .°. tested another circuit © top energy
= Simulation matched measurement
+ Powering some of the individual MO circuits showed no discrepancy...

* No discrepancy seen for all MO uniformly powered during measure-
ments in preparation of ion run (carried out @ 2.6TeV) = something sig-
nificant @ injection energy...

+ Current hypothesis: hysteresis issue significant only @ injection energy for
certain MO circuits
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E.g. 2: Correction of b3 RDT




Improving optics control in the LHC with forced RDTs bs RDT corr

Correction of b3 RDT

+ At injection energy there are 2 main sources of bs:

=% - < %
z - 2 = Z z -]
g
MQT: trim quadrupole 2
MO kew trim quadrupole 2 main dipole
: Landau/ lattice octupole = MCS: spool piece sextupole
SCB: lattice sextupole (normal/skew) + orbit corrector : spool piece octupole + decapole
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Correction of b3 RDT

+ At injection energy there are 2 main sources of bs:

= One of them is errors coming from - these are corrected
using mounted on the ends of them

kew trim quadrupole : main dipole
: Landaw/ lattice octupole spool piece sextupole
NMSCB: lattice sextupole (normal/skew) + orbit corrector : spool piece octupole + decapole
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Improving optics control in the LHC with forced RDTs bs RDT corr

Correction of b3 RDT

+ At injection energy there are 2 main sources of bs:

= One of them is errors coming from - these are corrected
using mounted on the ends of them

= The other is the lattice sextupoles (MS) - there to modulate chromaticity

MQT: trim quadrupole
MOS: skew trim quadrupole : main dipole
MO: Landaw/ lattice octupole 1CS: spool piece sextupole

('B: lattice sextupole (normal/skew) + orbit corrector : spool piece octupole + decapole
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Correction of b3 RDT

* Interestingly, when looking @ TbT spectrums - largest perturbation was from normal
sextupole.
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Correction of b3 RDT

+ This was a surprise - resonance far from WP.
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Improving optics control in the LHC with forced RDTs b3 RDT corr

Correction of b3 RDT

+ This was a surprise - resonance far from WP.

* Is it real???
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Correction of b3 RDT

+ RDT magnitude constant w/ kick amplitude

PR b ¥
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Improving optics control in the LHC with forced RDTs bs RDT corr

Correction of b3 RDT

* RDT magnitude constant w/ kick amplitude
= LHCB1 > LHCB2 .. will concentrate on LHCB1
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4 25.0 FE + HH% +
.E. + LHCB1
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Correction of b3 RDT

+ RDT magnitude constant w/ kick amplitude

« Initially thought b3 error correction was not working properly = comparison
to simulation = good agreement w/ simulation
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bs RDT Improving optics control in the LHC with forced RDTs bs RDT corr

Correction of b3 RDT

+ RDT magnitude constant w/ kick amplitude

« Initially thought bs error correction was not working properly = comparison
to simulation = good agreement w/ simulation

+ Comparison of model w/ and w/o the MS = they were main drivers of reso-
nance
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Improving optics control in the LHC with forced RDTs Creating bs correction

bs correction creation
* What happens if we change lattice design to correct this RDT?
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Improving optics control in the LHC with forced RDTs Creating bs correction

bs correction creation
* What happens if we change lattice design to correct this RDT?

+ The following approach was followed:
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Improving optics control in the LHC with forced RDTs Creating b3 correction

bs correction creation
* What happens if we change lattice design to correct this RDT?

+ The following approach was followed:

= Matched the RDT present in the lattice to a reduced level with MS using
MAD-NG's unique RDT matching capability
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Improving optics control in the LHC with forced RDTs Creating b3 correction

bs correction creation
* What happens if we change lattice design to correct this RDT?

+ The following approach was followed:

= Matched the RDT present in the lattice to a reduced level with MS using
MAD-NG's unique RDT matching capability

+ Constraints were required on maximum and minimum powering
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Improving optics control in the LHC with forced RDTs

Creating bs correction

bs correction creation
* What happens if we change lattice design to correct this RDT?

+ The following approach was followed:

= Matched the RDT present in the lattice to a reduced level with MS using
MAD-NG's unique RDT matching capability

+ Constraints were required on maximum and minimum powering

Some manual adjustments were required to not induce large chromatic
3-beating.

MAD-NG horizontal 3-beating MAD-NG figp0 RDT amplitude
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Measuring bs correction

+ Measurements showed RDT reduction w/ correction
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Measuring bs correction

+ Measurements showed RDT reduction w/ correction

+ Clear increase in kick amplitude reached w/ correction = improved forced DA

-+ No correction
-+ With correction
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Measuring bs correction

+ Measurements showed RDT reduction w/ correction
+ Clear increase in kick amplitude reached w/ correction = improved forced DA

* Increase in forced DA also shown in intensity surviving plot
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Measuring bs correction

+ Measurements showed RDT reduction w/ correction
+ Clear increase in kick amplitude reached w/ correction = improved forced DA
* Increase in forced DA also shown in intensity surviving plot

« Also, increased lifetime
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Measuring bs correction

+ Measurements showed RDT reduction w/ correction

+ Clear increase in kick amplitude reached w/ correction = improved forced DA
* Increase in forced DA also shown in intensity surviving plot

* Also, increased lifetime

» This was put into operation throughout 2024
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E.g. 3: New method to locally correct higher order
errors in low-£3 insertion




Higher order RDTs Improving optics control in the LHC with forced RDTs New RDT corr method

New method for locally correcting higher order RDTs

+ V. sensitive to optics errors from IPs . in HL-LHC will aim for corrections up to do-
decapole order
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New method for locally correcting higher order RDTs

+ V. sensitive to optics errors from IPs -, in HL-LHC will aim for corrections up to do-
decapole order

+ For higher order RDTs (decapolar, dodecapolar & beyond) direct measurement of
RDTs is very difficult
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New method for locally correcting higher order RDTs

+ V. sensitive to optics errors from IPs -, in HL-LHC will aim for corrections up to do-
decapole order

+ For higher order RDTs (decapolar, dodecapolar & beyond) direct measurement of
RDTs is very difficult

+ Correction via feed-down is a method used @ top energy, specifically end-of-squeeze, for
normal & skew sextupole corrections - enacted by correcting feed-down to tune
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Higher order RDTs Improving optics control in the LHC with forced RDTs New RDT corr method

New method for locally correcting higher order RDTs

+ V. sensitive to optics errors from IPs -, in HL-LHC will aim for corrections up to do-
decapole order

+ For higher order RDTs (decapolar, dodecapolar & beyond) direct measurement of
RDTs is very difficult

+ Correction via feed-down is a method used @ top energy, specifically end-of-squeeze, for
normal & skew sextupole corrections - enacted by correcting feed-down to tune

* This can be applied for these higher order RDTs - by correcting feed-down to ampli-
tude detuning - see J. Dilly’s paper
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New method for locally correcting higher order RDTs

+ V. sensitive to optics errors from IPs -, in HL-LHC will aim for corrections up to do-
decapole order

+ For higher order RDTs (decapolar, dodecapolar & beyond) direct measurement of
RDTs is very difficult

+ Correction via feed-down is a method used @ top energy, specifically end-of-squeeze, for
normal & skew sextupole corrections - enacted by correcting feed-down to tune

* This can be applied for these higher order RDTs - by correcting feed-down to ampli-
tude detuning - see J. Dilly’s paper

» While effective this is very time-consuming...
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Higher order RDTs Improving optics control in the LHC with forced RDTs New RDT corr method

New method for locally correcting higher order RDTs

+ V. sensitive to optics errors from IPs -, in HL-LHC will aim for corrections up to do-
decapole order

+ For higher order RDTs (decapolar, dodecapolar & beyond) direct measurement of
RDTs is very difficult

+ Correction via feed-down is a method used @ top energy, specifically end-of-squeeze, for
normal & skew sextupole corrections - enacted by correcting feed-down to tune

* This can be applied for these higher order RDTs - by correcting feed-down to ampli-
tude detuning - see J. Dilly’s paper

+ While effective this is very time-consuming...

+ Feed-down from higher order errors e.g. as, bs etc. can also result in magnitude in-
crease of lower order RDTs when crossing angles are applied on orbit
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Higher order RDTs Improving optics control in the LHC with forced RDTs New RDT corr method

New method for locally correcting higher order RDTs

+ V. sensitive to optics errors from IPs -, in HL-LHC will aim for corrections up to do-
decapole order

+ For higher order RDTs (decapolar, dodecapolar & beyond) direct measurement of
RDTs is very difficult

+ Correction via feed-down is a method used @ top energy, specifically end-of-squeeze, for
normal & skew sextupole corrections - enacted by correcting feed-down to tune

* This can be applied for these higher order RDTs - by correcting feed-down to ampli-
tude detuning - see J. Dilly’s paper

+ While effective this is very time-consuming...

+ Feed-down from higher order errors e.g. as, bs etc. can also result in magnitude in-
crease of lower order RDTs when crossing angles are applied on orbit

*» Due to this, an alternative, explored this year for first time, was to look @ RDT feed-
down from higher order errors
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Higher order RDTs Improving optics control in the LHC with forced RDTs Creating the correction

Creating the new RDT correction

* In order to carry this out a new GUI was created...

ROT Feeddown Analysis

LHCB Model
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Creating the new RDT correction

* In order to carry this out a new GUI was created...

+ This enabled quick matching of measured RDT response to crossing angle
w/ RDT response to corrector(s) w/ crossing angle in simulation

Knob Manager

IP7 | IP8

MCOSX_R1 -0.6

| IP1 P2 IF3 IP4 IPS IF6

Update Knobs and Re-Plot
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Measuring RDT feed-down correction

* Reduced change in 3Q, as function of crossing angle using skew octupole corrector in
ATLAS insertion
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Measuring RDT feed-down correction

* Reduced change in 3Q, as function of crossing angle using skew octupole corrector in
ATLAS insertion

+ This translated to a reduction in fig12 (skew octupolar) RDT
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Measuring RDT feed-down correction

* Reduced change in 3Q, as function of crossing angle using skew octupole corrector in
ATLAS insertion

+ This translated to a reduction in fig12 (skew octupolar) RDT

» Saw potential decapolar error contribution feeding down to quadratic relation for nor-
mal sextupolar resonance (fi020)
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Measuring RDT feed-down correction

* Reduced change in 3Q, as function of crossing angle using skew octupole corrector in
ATLAS insertion

+ This translated to a reduction in fig12 (skew octupolar) RDT

» Saw potential decapolar error contribution feeding down to quadratic relation for nor-
mal sextupolar resonance (fi020)

+ Also, see a linear variation of strength coming from 1st order feed-down from dode-
capole error & potential by or higher order contribution feeding down to quadratic
relation for normal decapolar resonance (fo140)
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LRBB RDT correction Improving optics control in the LHC with forced RDTs

E.g. 4: Long-Range Beam-Beam-driven RDT
correction
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LRBB RDT correction Improving optics control in the LHC with forced RDTs Motivation

Motivation

+ Traditionally LHC optics measurements & commissioning has focussed solely on low intensity
non-colliding bunches
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Motivation

+ Traditionally LHC optics measurements & commissioning has focussed solely on low intensity
non-colliding bunches

+ Long-Range Beam-Beam (LRBB) introduces many optics perturbations & strongly drives many
resonances = e.g. issues for dynamic aperture (DA), lifetime, luminosity, collimator hierarchy
etc
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Motivation

+ Traditionally LHC optics measurements & commissioning has focussed solely on low intensity
non-colliding bunches

+ Long-Range Beam-Beam (LRBB) introduces many optics perturbations & strongly drives many
resonances = e.g. issues for dynamic aperture (DA), lifetime, luminosity, collimator hierarchy
etc

» Therefore, direct beam-based studies of the impact on optics was of interest
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LRBB optics measurements

* New procedure created by OP team for optics measurements w/ LRBB - first trialled in 2024
machine development (MD)
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LRBB optics measurements

* New procedure created by OP team for optics measurements w/ LRBB - first trialled in 2024
machine development (MD)

= The machine is set up w/ 3 low-intensity single bunches (pilots) in 1 beam, in collision
with high-intensity bunches in other beam
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LRBB optics measurements

* New procedure created by OP team for optics measurements w/ LRBB - first trialled in 2024
machine development (MD)

= The machine is set up w/ 3 low-intensity single bunches (pilots) in 1 beam, in collision
with high-intensity bunches in other beam

* Having 3 pilots = comparison between bunches seeing full LR (pilot 1) to those see-
ing half LR (pilot 2) and no LR (pilot 3)
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LRBB optics measurements

* New procedure created by OP team for optics measurements w/ LRBB - first trialled in 2024
machine development (MD)

= The machine is set up w/ 3 low-intensity single bunches (pilots) in 1 beam, in collision
with high-intensity bunches in other beam

+ Having 3 pilots = comparison between bunches seeing full LR (pilot 1) to those see-
ing half LR (pilot 2) and no LR (pilot 3)

= Special BPM & collimator settings required - asymmetric between 2 beams
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LRBB optics measurements

* New procedure created by OP team for optics measurements w/ LRBB - first trialled in 2024
machine development (MD)

= The machine is set up w/ 3 low-intensity single bunches (pilots) in 1 beam, in collision
with high-intensity bunches in other beam

+ Having 3 pilots = comparison between bunches seeing full LR (pilot 1) to those see-
ing half LR (pilot 2) and no LR (pilot 3)

= Special BPM & collimator settings required - asymmetric between 2 beams

+ Standard optics measurements can then performed on the pilots without touching the high-
intensity beams
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Improving optics control in the LHC with forced RDTs LRBB optics measurements

LRBB optics measurements

* New procedure created by OP team for optics measurements w/ LRBB - first trialled in 2024
machine development (MD)

= The machine is set up w/ 3 low-intensity single bunches (pilots) in 1 beam, in collision
with high-intensity bunches in other beam

+ Having 3 pilots = comparison between bunches seeing full LR (pilot 1) to those see-
ing half LR (pilot 2) and no LR (pilot 3)

= Special BPM & collimator settings required - asymmetric between 2 beams

+ Standard optics measurements can then performed on the pilots without touching the high-
intensity beams
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Benchmarking

* In order to check a simulation-based approach was appropriate it was necessary to benchmark
simulations with measurement
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Benchmarking

* In order to check a simulation-based approach was appropriate it was necessary to benchmark
simulations with measurement

+ 2024 direct measurement showed very good agreement w/ simulation

= Model-based corrections seem appropriate

2024 LHCB2 Simulation and Measurement
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LRBB correction creation

+ In 2025, a correction was found using similar approach to the b; correction @
injection



https://madx.web.cern.ch/madx/releases/madng/html/index.html
https://xsuite.readthedocs.io/en/latest/
https://repository.cern/records/whbes-msj47
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LRBB correction creation

+ In 2025, a correction was found using similar approach to the b; correction @
injection

= Computed RDT response to inner triplet (IT) correctors using MAD-NG

Q1 Q2a (@} Q2b Q3 ’/"Eeam 1
i \‘\ﬁeam 2
linear correctors _ bl,al bl,al a2 )
nonlinear correctors b3,a3
Eg,a4

From: J. Dilly's PhD Thesis
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LRBB corr creation

LRBB correction creation
+ In 2025, a correction was found using similar approach to the b; correction @
Injection
= Computed RDT response to inner triplet (IT) correctors using MAD-NG
= Quantified change in RDT due to LRBB in Xsuite simulation

2024 LHCB1 Simulation 2024 LHCB2 Simulation
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LRBB corr creation

+ In 2025, a correction was found using similar approach to the b; correction @
injection

A7 200

If1020] [m

= Computed RDT response to inner triplet (IT) correctors using MAD-NG
= Quantified change in RDT due to LRBB in Xsuite simulation

= Matched the change in RDT due to LRBB (simultaneously in both beams),
using RDT response caused by IT correctors
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LRBB correction creation

+ In 2025, a correction was found using similar approach to the b; correction @
injection

= Computed RDT response to inner triplet (IT) correctors using MAD-NG
= Quantified change in RDT due to LRBB in Xsuite simulation

= Matched the change in RDT due to LRBB (simultaneously in both beams),
using RDT response caused by IT correctors

+ Solution found for main sextupole resonances close to WP - works for both

LHCB1 & LHCB2, w/ powering requirement well within what was available
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Measuring LRBB RDT corr

Measuring LRBB-driven RDT correction

* In 2025 MD, first test of correction was found to greatly reduce 3Q,
resonance. (no time to test normal sextupolar resonance)
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Measuring LRBB-driven RDT correction

* In 2025 MD, first test of correction was found to greatly reduce 3Q,
resonance. (no time to test normal sextupolar resonance)

* Does reducing RDT correspond to anything? Should increase lifetime...
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+ Forced RDT studies are used routinely in LHC




Conclusion Improving optics control in the LHC with forced RDTs

Conclusion

+ Forced RDT studies are used routinely in LHC

* These are used for benchmarking against the models

10th Low Emitta




Conclusion Improving optics control in the LHC with forced RDTs

Conclusion

+ Forced RDT studies are used routinely in LHC
* These are used for benchmarking against the models

+ From this, direct corrections can be found for specific resonances
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Conclusion

+ Forced RDT studies are used routinely in LHC
* These are used for benchmarking against the models
+ From this, direct corrections can be found for specific resonances

+ Also, can be used to study & correct high order errors in IPs by measuring
feed-down to lower order RDTs
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Conclusion

+ Forced RDT studies are used routinely in LHC
* These are used for benchmarking against the models
+ From this, direct corrections can be found for specific resonances

+ Also, can be used to study & correct high order errors in IPs by measuring
feed-down to lower order RDTs

+ Can also go beyond traditional single-particle optics to study resonances driven
by e.g. beam-beam
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Improving optics control in the LHC with forced RDTs

Thanks for your attention!
Any questions?

CERN ’ N, ’v ) ) _
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