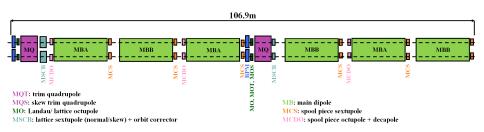
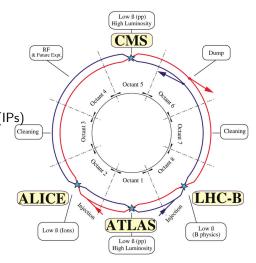

Improving optics control in the LHC with forced RDTs

10 October 2025

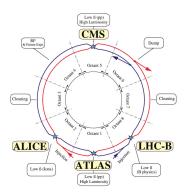
Sasha Horney

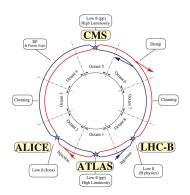
Thanks to E. Maclean, R. Tomás, L. Deniau, the Optics Measurements & Corrections team and the Operations team

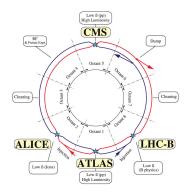

· 27km twin-ring synchrotron

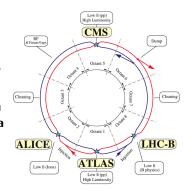


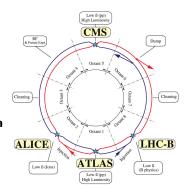
- · 27km twin-ring synchrotron
 - ⇒ 8 FODO arcs

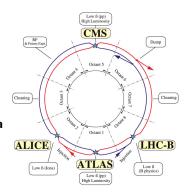

- 27km twin-ring synchrotron
 - ⇒ 8 **FODO** arcs
 - \Rightarrow 4 low β interaction points (IPs)

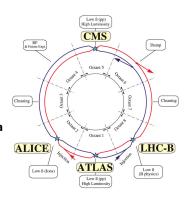

From: L. Stoel


· Very non-linear (NL) machine


- · Very non-linear (NL) machine
 - → Large NL errors from superconducting dipoles


- Very non-linear (NL) machine
 - → Large NL errors from superconducting dipoles
 - \Rightarrow Also from **experimental IP** (due to large β in triplets)


- · Very non-linear (NL) machine
 - → Large NL errors from superconducting dipoles
 - \Rightarrow Also from **experimental IP** (due to large β in triplets)
 - → Strong lattice sextupoles (MS) & Landau octupole (MO) magnets to correct chroma & for Landau damping respectively


- Very non-linear (NL) machine
 - → Large NL errors from superconducting dipoles
 - \Rightarrow Also from **experimental IP** (due to large β in triplets)
 - → Strong lattice sextupoles (MS) & Landau octupole (MO) magnets to correct chroma & for Landau damping respectively
- · Why study NL optics in LHC?

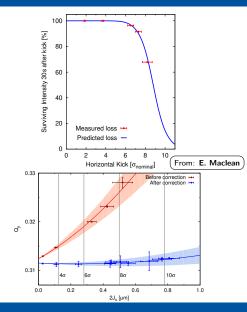
- Very non-linear (NL) machine
 - ⇒ Large NL errors from superconducting dipoles
 - \Rightarrow Also from **experimental IP** (due to large β in triplets)
 - → Strong lattice sextupoles (MS) & Landau octupole (MO) magnets to correct chroma & for Landau damping respectively
- · Why study NL optics in LHC?
 - ⇒ Potential impact on beam quality

- Very non-linear (NL) machine
 - → Large NL errors from superconducting dipoles
 - \Rightarrow Also from **experimental IP** (due to large β in triplets)
 - ⇒ Strong lattice sextupoles (MS) & Landau octupole (MO) magnets to correct chroma & for Landau damping respectively
- · Why study NL optics in LHC?
 - → Potential impact on beam quality
 - → Improve LHC modelling & understanding of dynamics ∴ impacting operation (OP) and design of future colliders

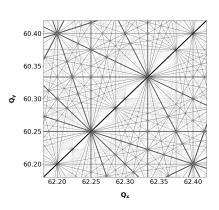
From: L. Stoel

NL studies

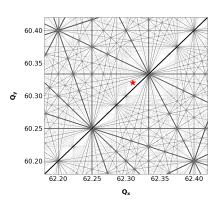
Introduction


 NL studies have been a priority in LHC studies since the start

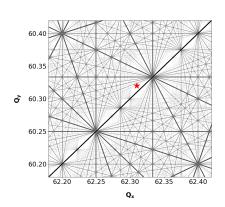
NL studies


NL studies

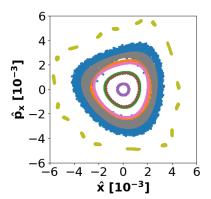
- NL studies have been a priority in LHC studies since the start
- There have been lots of studies including measurement of observables such as dynamic aperture, amplitude detuning and non-linear chromaticity


Resonances

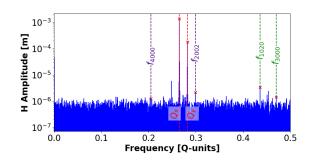
 Often care about particular resonances since ⇒ emittance growth & particle loss


Resonances

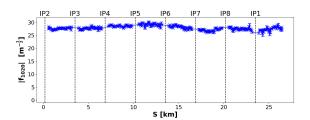
- Often care about particular resonances since ⇒ emittance growth & particle loss
- One of the most important properties of the machine is strength of certain resonances close to working point (WP)


Resonances

- Often care about particular resonances since ⇒ emittance growth & particle loss
- One of the most important properties of the machine is strength of certain resonances close to working point (WP)
- The strength of a resonance can be characterised by a resonance driving term (RDT)

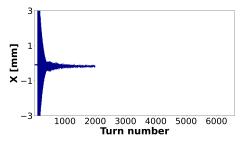


 After using a kicker to excite the beam, Turn-by-Turn (TbT) position data can then be logged using ~500 BPMs per beam around ring

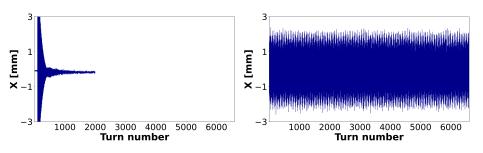

- After using a kicker to excite the beam, Turn-by-Turn (TbT) position data can then be logged using ~ 500 BPMs per beam around ring
- Resonances distort phase-space

- After using a kicker to excite the beam, Turn-by-Turn (TbT) position data can then be logged using ~500 BPMs per beam around ring
- · Resonances distort phase-space
- The phase-space distortion shows up as **peaks** in the TbT frequency spectrum (produced through harmonic analysis on TbT data)

- After using a kicker to excite the beam, Turn-by-Turn (TbT) position data can then be logged using ~500 BPMs per beam around ring
- Resonances distort phase-space
- The phase-space distortion shows up as **peaks** in the TbT frequency spectrum (produced through harmonic analysis on TbT data)
- Amplitude of peak \propto how much particular resonance **perturbs** the beam \Leftarrow an **RDT**


Resonances and RDTs

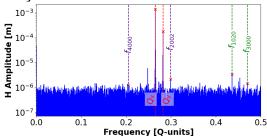
Resonance	RDT	Magnet type
$Q_x + 2Q_y$	f ₁₀₂₀	<i>b</i> ₃
$3Q_y$	f ₀₀₃₀	a 3
$2Q_x - 2Q_y$	f ₂₀₀₂	<i>b</i> ₄
$4Q_x$	f ₄₀₀₀	<i>b</i> ₄
$4Q_y$	f ₀₀₄₀	<i>b</i> ₄
$-Q_x + 4Q_y$	f ₀₁₄₀	<i>b</i> ₅



• Originally, RDTs were measured by using a kicker magnet to excite the beam


- Originally, RDTs were measured by using a kicker magnet to excite the beam
- Quite challenging since the signal rapidly decoheres

- Originally, RDTs were measured by using a kicker magnet to excite the beam
- · Quite challenging since the signal rapidly decoheres
- TbT acquisition can also be taken by exciting an AC dipole (ACD) for thousands of turns which means...



- Originally, RDTs were measured by using a kicker magnet to excite the beam
- Quite challenging since the signal rapidly decoheres
- TbT acquisition can also be taken by exciting an AC dipole (ACD) for thousands of turns which means...
 - → A good spectra

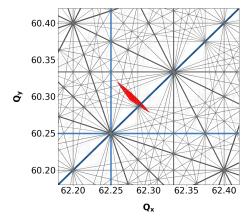
- Originally, RDTs were measured by using a kicker magnet to excite the beam
- Quite challenging since the signal rapidly decoheres
- TbT acquisition can also be taken by exciting an AC dipole (ACD) for thousands of turns which means...
 - ⇒ A good spectra
 - ⇒ Exact frequency of lines known

- Originally, RDTs were measured by using a kicker magnet to excite the beam
- Quite challenging since the signal rapidly decoheres
- TbT acquisition can also be taken by exciting an AC dipole (ACD) for thousands of turns which means...
 - ⇒ A good spectra
 - ⇒ Exact frequency of lines known
 - ⇒ Can kick repeatedly due to adiabatic excitations

How do we use RDTs in the LHC?

- E.g. 1: Benchmarking b₄ RDT
- E.g. 2: Correction of b₃ RDT
- E.g. 3: Creating new higher order RDT correction method
- E.g. 4: Long-Range Beam-Beam-driven RDT correction

E.g. 1: Benchmarking b₄ RDT

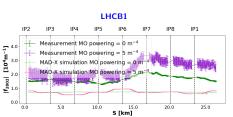

Landau Octupoles

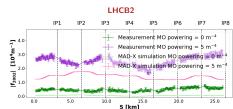
ullet Reminder: Landau octupoles are used for the purpose of Landau damping

Landau Octupoles

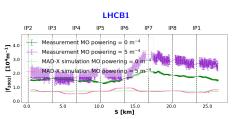
Landau Octupoles

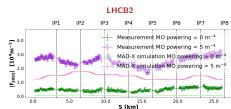
- · Reminder: Landau octupoles are used for the purpose of Landau damping
 - ⇒ This effect occurs due to tune spread & is in the interest of overall stability

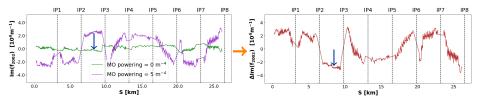



• In 2023, a correction scheme was introduced @ injection energy to compensate octupolar RDTs driven by the Landau octupoles (MO)

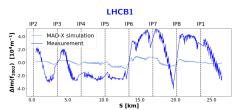
- In 2023, a correction scheme was introduced @ injection energy to compensate octupolar RDTs driven by the Landau octupoles (MO)
 - ⇒ Will concentrate on f₂₀₀₂ RDT since closest to WP

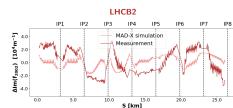



- In 2023, a correction scheme was introduced @ injection energy to compensate octupolar RDTs driven by the Landau octupoles (MO)
- To check this was working as expected **benchmarking** of measurements was required, looking $@ f_{2002}$ RDT response to MO powering
 - ⇒ Found that RDT amplitude shows a large discrepancy, especially for LHCB2...



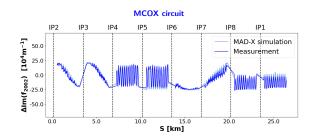
- In 2023, a correction scheme was introduced @ injection energy to compensate octupolar RDTs driven by the Landau octupoles (MO)
- To check this was working as expected **benchmarking** of measurements was required, looking $@ f_{2002}$ RDT response to MO powering
 - ⇒ Found that RDT amplitude shows a large discrepancy, especially for LHCB2...
- Is it real? Could an MO circuit be faulty...?

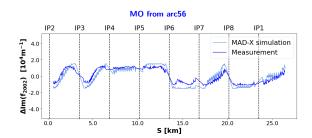



• To better understand error - shall look @ shifts to real/imaginary parts of RDT caused by MO powering (since it gives a clearer picture of direction)

b₄ benchmarking

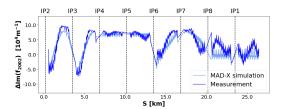
- To better understand error shall look @ shifts to real/imaginary parts of RDT caused by MO powering (since it gives a clearer picture of direction)
- This shows that **actually** discrepancy for **LHCB1** > **LHCB2** ⇒ show just LHCB1




b₄ benchmarking

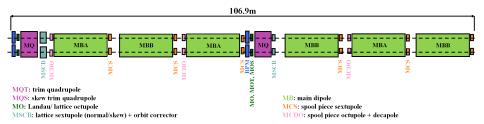
- To better understand error shall look @ shifts to real/imaginary parts of RDT caused by MO powering (since it gives a clearer picture of direction)
- This shows that **actually** discrepancy for **LHCB1** > **LHCB2** ⇒ show just LHCB1
- Need to find source since accurate modelling of octupolar resonances needed for many different studies...

- Perhaps an analysis tools issue : tested another circuit @ top energy
 - **⇒ Simulation matched measurement**

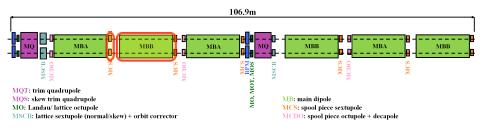


- Perhaps an analysis tools issue : tested another circuit @ top energy
 - **⇒ Simulation matched measurement**
- Powering some of the individual MO circuits showed no discrepancy...

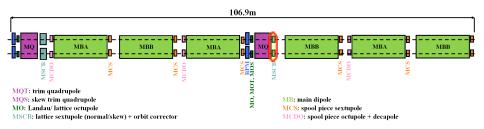
- Perhaps an analysis tools issue : tested another circuit @ top energy
 - **⇒ Simulation matched measurement**
- Powering some of the individual MO circuits showed no discrepancy...
- No discrepancy seen for all MO uniformly powered during measurements in preparation of ion run (carried out @ 2.6TeV) ⇒ something significant @ injection energy...



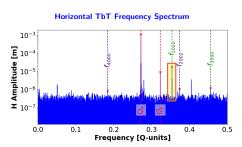
- Perhaps an **analysis tools issue** : tested another circuit @ top energy
 - **⇒ Simulation matched measurement**
- Powering some of the individual MO circuits showed no discrepancy...
- No discrepancy seen for all MO uniformly powered during measurements in preparation of ion run (carried out @ 2.6TeV) ⇒ something significant @ injection energy...
- Current hypothesis: hysteresis issue significant only @ injection energy for certain MO circuits

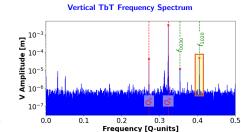

E.g. 2: Correction of b_3 RDT

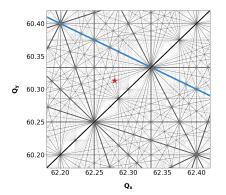
• At injection energy there are 2 main sources of b_3 :



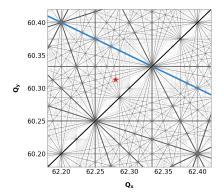
- At injection energy there are 2 main sources of b_3 :
 - → One of them is errors coming from superconducting dipoles these are corrected using sextupole correctors mounted on the ends of them

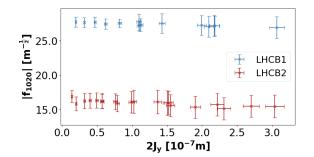



- At injection energy there are 2 main sources of b_3 :
 - → One of them is errors coming from superconducting dipoles these are corrected using sextupole correctors mounted on the ends of them
 - ⇒ The other is the lattice sextupoles (MS) there to modulate chromaticity

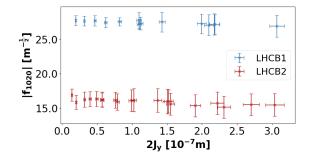


 Interestingly, when looking @ TbT spectrums - largest perturbation was from normal sextupole.

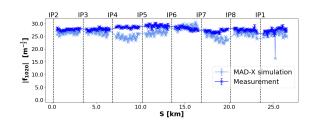



• This was a surprise - resonance far from WP.

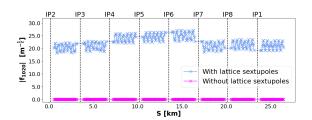
- This was a surprise resonance far from WP.
- Is it **real**???



• RDT magnitude **constant** w/ kick amplitude



- RDT magnitude constant w/ kick amplitude
 - ⇒ LHCB1 > LHCB2 ∴ will concentrate on LHCB1



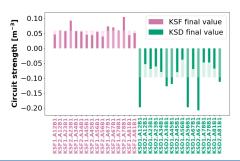
- RDT magnitude constant w/ kick amplitude
- Initially thought b_3 error correction was not working properly \Rightarrow comparison to simulation \Rightarrow good agreement w/ simulation

- RDT magnitude constant w/ kick amplitude
- Initially thought b_3 error correction was not working properly \Rightarrow comparison to simulation \Rightarrow good agreement w/ simulation
- Comparison of model w/ and w/o the MS \Rightarrow they were main drivers of resonance

b_3 correction creation

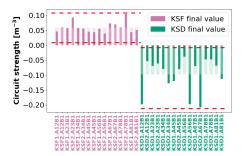
• What happens if we change lattice design to correct this RDT?

b_3 correction creation

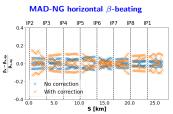

- What happens if we change lattice design to correct this RDT?
- The following approach was followed:

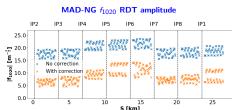
Creating b_3 correction

b_3 correction creation

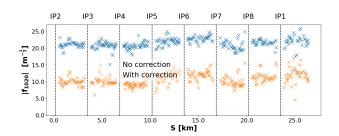

- What happens if we change lattice design to correct this RDT?
- The following approach was followed:
 - → Matched the RDT present in the lattice to a reduced level with MS using MAD-NG's unique RDT matching capability

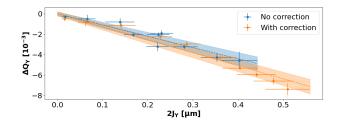
b_3 correction creation

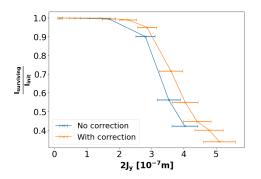

- What happens if we change lattice design to correct this RDT?
- The following approach was followed:
 - → Matched the RDT present in the lattice to a reduced level with MS using MAD-NG's unique RDT matching capability
 - * Constraints were required on maximum and minimum powering

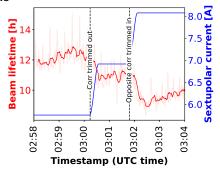


b₃ correction creation


- What happens if we **change lattice design** to correct this RDT?
- The following approach was followed:
 - → Matched the RDT present in the lattice to a reduced level with MS using MAD-NG's unique RDT matching capability
 - * Constraints were required on maximum and minimum powering
 - Some manual adjustments were required to not induce large chromatic β -beating.




• Measurements showed RDT reduction w/ correction


- Measurements showed RDT reduction w/ correction
- Clear increase in kick amplitude reached w/ correction ⇒ improved forced DA

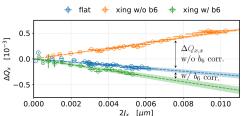
- Measurements showed RDT reduction w/ correction
- Clear increase in kick amplitude reached w/ correction ⇒ improved forced DA
- · Increase in forced DA also shown in intensity surviving plot

- Measurements showed RDT reduction w/ correction
- Clear increase in kick amplitude reached w/ correction ⇒ improved forced DA
- · Increase in forced DA also shown in intensity surviving plot
- · Also, increased lifetime

- Measurements showed RDT reduction w/ correction
- Clear increase in kick amplitude reached w/ correction ⇒ improved forced DA
- · Increase in forced DA also shown in intensity surviving plot
- · Also, increased lifetime
- · This was put into operation throughout 2024

E.g. 3: New method to locally correct higher order errors in low- β insertion

 V. sensitive to optics errors from IPs : in HL-LHC will aim for corrections up to dodecapole order



- V. sensitive to optics errors from IPs : in HL-LHC will aim for corrections up to dodecapole order
- For **higher order RDTs** (decapolar, dodecapolar & beyond) **direct measurement** of RDTs is **very difficult**

- V. sensitive to optics errors from IPs : in HL-LHC will aim for corrections up to dodecapole order
- ${}^{\bullet}$ For higher order RDTs (decapolar, dodecapolar & beyond) direct measurement of RDTs is very difficult
- Correction via feed-down is a method used @ top energy, specifically end-of-squeeze, for normal & skew sextupole corrections enacted by correcting feed-down to tune

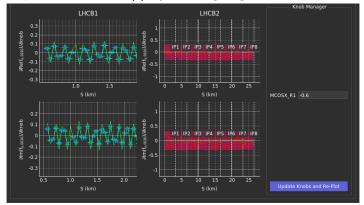
- V. sensitive to optics errors from IPs : in HL-LHC will aim for corrections up to dodecapole order
- For **higher order RDTs** (decapolar, dodecapolar & beyond) **direct measurement** of RDTs is **very difficult**
- Correction via feed-down is a method used @ top energy, specifically end-of-squeeze, for normal & skew sextupole corrections enacted by correcting feed-down to tune
- This can be applied for these higher order RDTs by correcting **feed-down to amplitude detuning** see **J. Dilly's paper**

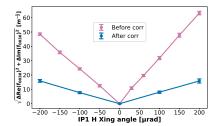
- V. sensitive to optics errors from IPs : in HL-LHC will aim for corrections up to dodecapole order
- For **higher order RDTs** (decapolar, dodecapolar & beyond) **direct measurement** of RDTs is **very difficult**
- Correction via feed-down is a method used @ top energy, specifically end-of-squeeze, for normal & skew sextupole corrections enacted by correcting feed-down to tune
- This can be applied for these higher order RDTs by correcting **feed-down to amplitude detuning** see **J. Dilly's paper**
- · While effective this is very time-consuming...

- V. sensitive to optics errors from IPs : in HL-LHC will aim for corrections up to dodecapole order
- For **higher order RDTs** (decapolar, dodecapolar & beyond) **direct measurement** of RDTs is **very difficult**
- Correction via feed-down is a method used @ top energy, specifically end-of-squeeze, for normal & skew sextupole corrections enacted by correcting feed-down to tune
- This can be applied for these higher order RDTs by correcting **feed-down to amplitude detuning** see **J. Dilly's paper**
- · While effective this is very time-consuming...
- Feed-down from higher order errors e.g. a_4 , b_5 etc. can also result in magnitude increase of lower order RDTs when crossing angles are applied on orbit

- V. sensitive to optics errors from IPs : in HL-LHC will aim for corrections up to dodecapole order
- For **higher order RDTs** (decapolar, dodecapolar & beyond) **direct measurement** of RDTs is **very difficult**
- Correction via feed-down is a method used @ top energy, specifically end-of-squeeze, for normal & skew sextupole corrections enacted by correcting feed-down to tune
- This can be applied for these higher order RDTs by correcting **feed-down to amplitude detuning** see **J. Dilly's paper**
- While effective this is very time-consuming...
- Feed-down from higher order errors e.g. a_4 , b_5 etc. can also result in magnitude increase of lower order RDTs when crossing angles are applied on orbit
- Due to this, an alternative, explored this year for first time, was to look @ RDT feed-down from higher order errors

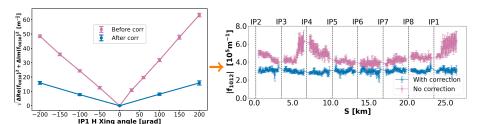
Creating the new RDT correction

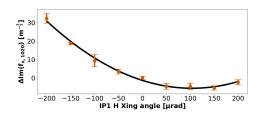

• In order to carry this out a **new GUI** was created...


Creating the new RDT correction

- In order to carry this out a new GUI was created...
- This enabled quick matching of measured RDT response to crossing angle w/ RDT response to corrector(s) w/ crossing angle in simulation

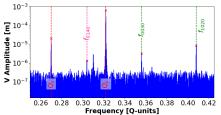
Measuring RDT feed-down correction

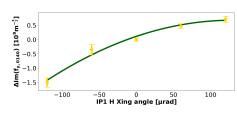

• Reduced change in $3Q_y$ as function of **crossing angle** using skew octupole corrector in **ATLAS** insertion


Measuring RDT feed-down correction

- Reduced change in $3Q_y$ as function of **crossing angle** using skew octupole corrector in **ATLAS** insertion
- This translated to a **reduction** in f_{1012} (skew octupolar) RDT

Measuring RDT feed-down correction


- Reduced change in $3Q_y$ as function of **crossing angle** using skew octupole corrector in **ATLAS** insertion
- This translated to a **reduction** in f_{1012} (skew octupolar) RDT
- Saw potential **decapolar error** contribution feeding down to **quadratic** relation for **normal sextupolar resonance** (f_{1020})



Measuring correction

Measuring RDT feed-down correction

- $oldsymbol{\cdot}$ Reduced change in $3Q_y$ as function of **crossing angle** using skew octupole corrector in **ATLAS insertion**
- This translated to a **reduction** in f_{1012} (skew octupolar) RDT
- Saw potential **decapolar error** contribution feeding down to **quadratic** relation for **normal sextupolar resonance** (f_{1020})
- Also, see a **linear variation** of strength coming from **1st order feed-down** from **dode-capole** error & potential b_7 or higher order contribution feeding down to **quadratic** relation for **normal decapolar resonance** (f_{0140})

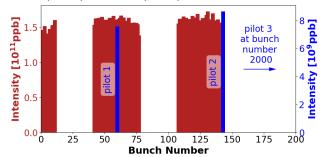
E.g. 4: Long-Range Beam-Beam-driven RDT correction

Motivation

 Traditionally LHC optics measurements & commissioning has focussed solely on low intensity non-colliding bunches

- Traditionally LHC optics measurements & commissioning has focussed solely on low intensity non-colliding bunches
- Long-Range Beam-Beam (LRBB) introduces many optics perturbations & strongly drives many resonances ⇒ e.g. issues for dynamic aperture (DA), lifetime, luminosity, collimator hierarchy etc

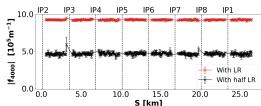
Motivation


- Traditionally LHC optics measurements & commissioning has focussed solely on low intensity non-colliding bunches
- Long-Range Beam-Beam (LRBB) introduces many optics perturbations & strongly drives many resonances \Rightarrow e.g. issues for dynamic aperture (DA), lifetime, luminosity, collimator hierarchy etc
- Therefore, direct beam-based studies of the impact on optics was of interest

 New procedure created by OP team for optics measurements w/ LRBB - first trialled in 2024 machine development (MD)

- New procedure created by OP team for optics measurements w/ LRBB first trialled in 2024 machine development (MD)
 - ⇒ The machine is set up w/ 3 low-intensity single bunches (pilots) in 1 beam, in collision with high-intensity bunches in other beam

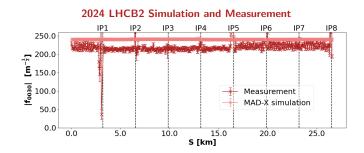
- New procedure created by OP team for optics measurements w/ LRBB first trialled in 2024 machine development (MD)
 - ⇒ The machine is set up w/ 3 low-intensity single bunches (pilots) in 1 beam, in collision with high-intensity bunches in other beam
 - * Having 3 pilots ⇒ comparison between bunches seeing full LR (pilot 1) to those seeing half LR (pilot 2) and no LR (pilot 3)



- New procedure created by OP team for optics measurements w/ LRBB first trialled in 2024 machine development (MD)
 - → The machine is set up w/ 3 low-intensity single bunches (pilots) in 1 beam, in collision with high-intensity bunches in other beam
 - * Having 3 pilots ⇒ comparison between bunches seeing **full LR** (pilot 1) to those seeing **half LR** (pilot 2) and **no LR** (pilot 3)
 - ⇒ Special BPM & collimator settings required asymmetric between 2 beams

- New procedure created by OP team for optics measurements w/ LRBB first trialled in 2024 machine development (MD)
 - → The machine is set up w/ 3 low-intensity single bunches (pilots) in 1 beam, in collision with high-intensity bunches in other beam
 - Having 3 pilots ⇒ comparison between bunches seeing full LR (pilot 1) to those seeing half LR (pilot 2) and no LR (pilot 3)
 - ⇒ Special BPM & collimator settings required asymmetric between 2 beams
- Standard optics measurements can then performed on the pilots without touching the highintensity beams

- New procedure created by OP team for optics measurements w/ LRBB first trialled in 2024 machine development (MD)
 - ⇒ The machine is set up w/ 3 low-intensity single bunches (pilots) in 1 beam, in collision with high-intensity bunches in other beam
 - * Having 3 pilots ⇒ comparison between bunches seeing **full LR** (pilot 1) to those seeing **half LR** (pilot 2) and **no LR** (pilot 3)
 - ⇒ Special BPM & collimator settings required asymmetric between 2 beams
- Standard optics measurements can then performed on the pilots without touching the highintensity beams
- · This has also been carried out in 2025

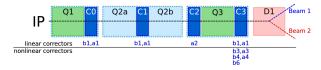


Benchmarking

• In order to check a **simulation-based approach** was **appropriate** it was necessary to **benchmark** simulations with measurement

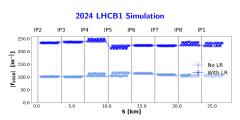
Benchmarking

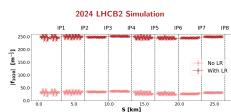
- In order to check a simulation-based approach was appropriate it was necessary to benchmark simulations with measurement
- · 2024 direct measurement showed very good agreement w/ simulation
 - ⇒ Model-based corrections seem appropriate


LRBB correction creation

• In 2025, a correction was found using **similar approach** to the b_3 correction @ injection

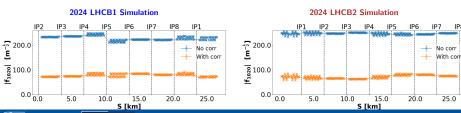
LRBB correction creation

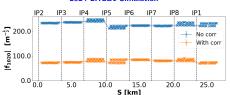

- In 2025, a correction was found using **similar approach** to the b_3 correction @ injection
 - → Computed RDT response to inner triplet (IT) correctors using MAD-NG

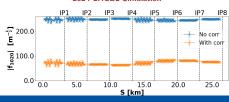


From: J. Dilly's PhD Thesis

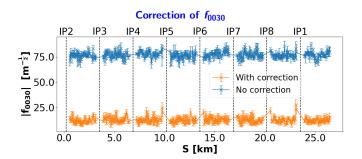
LRBB corr creation


- In 2025, a correction was found using **similar approach** to the b_3 correction @ injection
 - → Computed RDT response to inner triplet (IT) correctors using MAD-NG
 - ⇒ Quantified change in RDT due to LRBB in Xsuite simulation

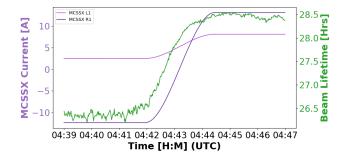

LRBB correction creation


- In 2025, a correction was found using **similar approach** to the b_3 correction @ injection
 - ⇒ Computed RDT response to inner triplet (IT) correctors using MAD-NG
 - ⇒ Quantified change in RDT due to LRBB in Xsuite simulation
 - → Matched the change in RDT due to LRBB (simultaneously in both beams), using RDT response caused by IT correctors

LRBB correction creation


- In 2025, a correction was found using **similar approach** to the b_3 correction @ injection
 - → Computed RDT response to inner triplet (IT) correctors using MAD-NG
 - ⇒ Quantified change in RDT due to LRBB in Xsuite simulation
 - → Matched the change in RDT due to LRBB (simultaneously in both beams), using RDT response caused by IT correctors
- Solution found for main sextupole resonances close to WP works for both LHCB1 & LHCB2, w/ powering requirement well within what was available
 2024 LHCB1 Simulation

Measuring LRBB-driven RDT correction


• In 2025 MD, first test of correction was found to greatly reduce $3Q_y$ resonance. (no time to test normal sextupolar resonance)

Measuring LRBB-driven RDT correction

- In 2025 MD, first test of correction was found to greatly reduce $3Q_v$ resonance. (no time to test normal sextupolar resonance)
- Does reducing RDT correspond to anything? Should increase lifetime...

• Forced RDT studies are used routinely in LHC

- Forced RDT studies are used routinely in LHC
- These are used for **benchmarking** against the models

- Forced RDT studies are used routinely in LHC
- These are used for **benchmarking** against the models
- From this, direct corrections can be found for specific resonances

- Forced RDT studies are used routinely in LHC
- These are used for **benchmarking** against the models
- From this, direct corrections can be found for specific resonances
- Also, can be used to study & correct high order errors in IPs by measuring feed-down to lower order RDTs

- Forced RDT studies are used routinely in LHC
- These are used for benchmarking against the models
- From this, direct corrections can be found for specific resonances
- Also, can be used to study & correct high order errors in IPs by measuring feed-down to lower order RDTs
- Can also go beyond traditional single-particle optics to study resonances driven by e.g. beam-beam

Thanks for your attention! Any questions?

