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Introduction

« Xsuite is a python-based beam simulation software package

« Currently, insertion devices are not extensively modeled in Xsuite
» (Goal: To build a robust and reproducible model that captures the most important features of an undulator

* We studied the APPLE-Knot undulator in the SLS2.0 in Xsuite
* Modeled the undulator field
» Tracked particles through undulator and calculated optical functions
« Compared to sliced model

« Observed:
« Beta-beating
» Coupling due to sextupolar components and longitudinal fields has been observed
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Motivation

Future Circular Collider (FCC-ee)
« Electron-positron collider
« Circumference of 90.7 km

« Beam energy up to 175 GeV

First stage of acceleration: damping ring
» Circumference of ~373 m

« Beam energy of 2.86 GeV

« Uses wigglers to enhance damping

Under consideration: Spin polarizer ring
» Longitudinal magnetic fields cause decoherence [1]

* Longitudinal fields may arise in wigglers
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From [8].
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Case Study: APPLE-Knot Undulator SLS2.0

« Swiss Light Source (SLS2.0) J/ @- m-

* Electron storage ring
« Circumference of 288 m
« Beamenergyof 2.4 -2.7 GeV

 APPLE-Knot Undulator
« Advanced Planar Polarized Light Emitter

« Control polarization by setting array alignment
* Knot: Electron makes “knot-like” shape in xy-plane

 Use as case study to improve understanding of |

characteristics of wiggler fields 400 40 -40 0 40 -40 0 40
Source: [2] X (pm)
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APPLE Knot Undulator: B at (x,y) = (0, O) mm

Magnetic Field at (X, Y) = (0, 0)

i Hmmmmmnm
J\uuuwuuuuuumuuuuuuuuummuuuu

With thanks to Marco Calvi and Simona

Bettoni from PSI| who provided the data

0.0
Longitudinal Position, s [m]
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APPLE Knot Undulator : B at (x,y) = (1, O) mm

Magnetic Field at (X, Y) = (1, 0)

nmmmmmmmmmm
J\uuuuuuuuuuuuuuuuuuuuuuwuuuuuuuuu

With thanks to Marco Calvi and Simona

Bettoni from PSI| who provided the data

Longitudinal Position, s [m]
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Objectives

« Model undulators in Xsuite

« Three-dimensional field map too expensive:
* N, =N, =20, Ny = 2400 already gives 2.9 - 10° stored points

* Need Maxwell-obeying interpolation between these points

. Find a compact and flexible description of B (x, y,S)

« Field at any point (x, y, s) can be found from field on one axis, §(O, 0,5s)
» Field on-axis requires us to store 7200 points

» Generated function automatically obeys Maxwell’'s Equations

« Perform tracking and optics calculations in Xsuite
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S. van der Schueren, (2024) Magnetic field modelling

B p m et h and symplectic integration of magnetic fields on

curved reference frames for improved synchrotron design

« Following method from Ref. [3] and references therein. Define functions

am—le

An(S) = -t
x=y=0

am—lBy

bn(s) = o1
x=y=0

bs(s) = B;(0,0,s)

« It can be shown that the scalar potential ®(x, y, s) can be expressed as

(7,5 = ) $ula5)
n=0

*  Where ¢,,(x,s) depends on a,,(s), b,,,(s), b;(s) and their derivatives. The magnetic field is then found from
§(X;Y;S) = —Vo
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Determining B(x, y, s)

« So far, bpmeth has mainly been used for fringe fields, but we will apply it to wigglers/undulators
« The full magnetic field B(x, y, s) can be found to arbitrary precision

+ If B does not depend on s, then a,, and b,,, reduce to the skew and normal multipole coefficients respectively

* In a sliced multipole model, a,,,(s) and b,,,(s) are assumed to be approximately constant over a short interval
and are thus interpreted as short pure multipole coefficients

* However, this last approach alone will not (correctly) predict a longitudinal component off-axis, as we will see
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Transverse Derivatives

* First few coefficients:

a(s) =By _
0B
a,(s) = a—y
X x=y=0
0°B
aB(S) — axzx
x=y=0

« So a; ~ Dipole, a, ~ Quadrupole, a; ~ Sextupole
« Transverse functions are fitted up to order 02 B;

« First derivative is negligible; a,(s) = b,(s) = 0

« Second derivative defines a;(s) and b;(s)
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Fit for On-Axis Field
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Analytic Expressions for Transverse Derivatives
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Calculate Fields from 0utI|ned Method

Field Compar at (0.0, 0.0)

A A A A A A A A

x [T]
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0.0
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Calculate Fields from 0utI|ned Method

- MMMM”MMMMMMMMMMMMM”M”MW”” et
ol _

The longitudinal field appears
from a,,(s) and b,,,(s) I |
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Undulator in SLS2.0: Compare Several Methods

* Ring without undulator
« Tracking through undulator: Short-term properties
« Sliced undulator: Long-term studies

Bend h
Quad
Kick h
Kick v
Sext

§(x, y,S) -

102.5 103.0 103.5 104.0
s s[m]
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Undulator in SLS2.0: Boris Integrator

 Phase-space area conserving integrator [4]
* Not symplectic
«  One evaluation of B(x, y,S) per step
« Per-step error of O(h3), integrated error of 0(h?)
« Error oscillates, does not blow up

« For h such that the error approaches machine precision, Boris integrator is effectively symplectic

« Xsuite calculates Twiss parameters with finite differences
« Can calculate Twiss from tracking
» Investigate beta-beating and coupling effects

« Sliced undulator constructed from §(x, Y,S)
« Compare the sliced undulator with the tracked one: On-axis and 5 - 10~* m displacement
« Work on Boris integrator has just started; Investigate its viability
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Undulator in SLS2.0: Closed Orbit

Orbit might look unexpected le—5 Closed orbit through undulator
Cross-check with undulator simulation - —— Xco bpmeth
expert at PSI ' ” —— Yco bpmeth

2.0 1
Dipole kicks added at the edges to avoid 15 -
closed orbit leakage outside the wiggler =
= 1.0-
% 05- |
1 W'\llh ' | )'h‘
(A
"v"f\M'f\Wf\W
—1.0 A
OjO 0j5 1j0 1j5 2j0
s [m]
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Undulator in SLS2.0: Closed Orbit

» Insert 10 such wigglers in the ring. 0

« Real SLS2.0 does not have ten APPLE-Knot

undulators =207

* Does provide understanding of some € _40-
important features x

_60 -

_80 .

Quadrupole magnet
Sextupole magnet
Octupole magnet

Bending magnet

60
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Undulator in SLS2.0: Beta Beating from Wigglers

« Large portion of beta-beating likely artifact of distorted closed orbit

« Weak effect due to quadrupole as a result of feed-down from the sextupole components

« Good agreement between tracking and slicing




Undulator in SLS2.0: Coupling

* In the presence of coupling:
« Eigenmodes (1, 2) of one-turn matrix do not align with the modes in the chosen coordinates (x, y) [7]

* Amplitude ratios:
= |A1,x|/|A1,y|
r; = |A2,x|/|A2,y|

« Tunes of eigenmodes, Q4, Q,
» Coupling parameter:

2\/7”17”2|Q1 — Q.|

1+nrmnr

[

« Parameter arises (among others) from skew quadrupoles or longitudinal fields
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ﬁx,Z [m]

Undulator in SLS2.0: Coupling

Orbit on wiggler axis
Second-order horizontal beta function

Wiggler shifted x, = 5-10"* m

Second-order horizontal beta function
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Undulator in SLS2.0: Coupling

Orbit on wiggler axis

Second-order horizontal beta function
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| I |
—— Multipoles, |C ~|=2.43e-04

Wiggler shifted x, = 5-107* m

econd-order horizontal beta function
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s[ml] s [m]
« Coupling much stronger in misaligned wiggler
+ Off-centre sextupoles contribute ~1 order of magnitude
* Longitudinal fields contribute ~ factor 3
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Conclusions and Outlook

« We have a way of modeling insertion devices with arbitrary field distributions in Xsuite
* Model is based on field and its derivatives, only on-axis
« Bpmeth can extrapolate magnetic field to arbitrary points, such that it satisfies Maxwell’s Equations

« Undulator model, constructed this way, can be integrated into an Xsuite lattice
« For now: Can be used for short-term tracking and Twiss calculations
« Demonstrated that we can compute impact on beta-beating and coupling
« Already observed that wiggler constructed from multipoles does not correctly account for coupling

* Next steps:
« Improve performance of field calculation (present implementation is quite naive)
« Make fitting procedure more robust and versatile
« Validate spin-tracking through map
« Ensure reliable long-term tracking simulation (investigate using symplectic integrators)
« Implement existing map models from other codes and compare with existing maps [6][7]
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TethOO k Wi g g Ie rl U 1) d u I ato r https://www.researchgate.net/fiqure/Sc

hematic-of-a-wiggler-undulator-
structure-adopted-from-

77 _figd 231521467

« Halbach array
« Arrangement of permanent dipole magnets
« Enhances the field on one side

« Two Halbach arrays generate a field of the form
By, = B, cosh(k y) sin(k s)
B, = B sinh(k y) cos(k s)

« Important features:
* Field periodic along axis;
* No horizontal component (B, = 0)
« Longitudinal field zero on-axis

- Off-axis, B; appears
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S. van der Schueren, (2024) Magnetic field modelling
T h e B p m et h (O d ) and symplectic integration of magnetic fields on

curved reference frames for improved synchrotron design

0B,
0x

isieZ and higher

« Using Maxwell’'s Equations, full B(x, y,s) can be recovered from B(0,0,s),
x=y=0 0X ly=y=0

derivatives

« Method outlined in Ref. [SILKE] and references therein
B=-Vd

« Harmonic magnetic field can be derived from a scalar potential ® that obeys:
Vid =0

« The scalar potential can be expanded as:

D(,y,5) = ) $nln5)
n=0
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The Bpmeth(od)

S. van der Schueren, (2024) Magnetic field modelling
and symplectic integration of magnetic fields on

curved reference frames for improved synchrotron design

« Substituting this into the Laplace equation gives the recurrence relation

bniz =

* This means we only need two ¢,, to determine all others

= d,((1+ hx) 0 9, = d
_1+hx[x(( T x) x¢n)+ S<1-I——hx s¢n>]

* Choose the first two ¢,; ¢, and ¢; and expand these in x

(00]

bo=—a0(s) = ) am(s)

=1

¢ = — i b (s
m=1

m

xm—l
) (m—1)!
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S. van der Schueren, (2024) Magnetic field modelling
T h e B p m et h (O d ) and symplectic integration of magnetic fields on

curved reference frames for improved synchrotron design

« Then, applying B=-Vo gives

(00]

xnkd
Bx(xr O, S) — _ax(PO = nZl am(s)m
1n—1
By(x,0,s) = —¢1 = Z bm(S) — 1)

Bs(0,0,s) = —6sao = b(S)

 From this, we find that

om-1pB,
An(S) = -7
x=y=0
am-1B,
bin(s) = ===
x=y=0
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The Bpmeth(od)

Table 1: First Terms of the Expansion of the Magnetic Field

1 X y xz xy y2
—asz—h(ay—a h-2b.)+bsh’—a’
Bx (.11 az bz as b3 3 ( 2 1 ) 1
) b +}%b +b’/
By bl b2 —b;—alh—az % —aj _h(az_alh_zb;)_l_bsh!_ai; 93 %2 1
a; aih’'+ha’+b! +a’
By by -bsh+a b’ bsh* —ajh + 3 —hb’ +b), —
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Boris Integrator

State vector:

Px
W = py
U/c
« Space step:
dw
E:Mw+b
Where:
0 B, E./c —B,
m=2|-B, 0 Ec|, b=q|B,
Pz Ex/c E,/c 0 E,/c

Transform w half-step by only b, transform full-step with M, transform w with final half-step using only b

<C;ERN§§? Sietse Buijsman | Modeling of Insertion Devices in Xsuite 10 October 2025
N



Undulator in SLS2.0: Damping and Equilibrium
Emittance (xy, = 0)

Bpmeth Sliced No Wiggler
a, [s71] 184.87 184.87 169.73
ay [s7] 107.85 107.85 92.706
a [s7] 138.67 138.67 108.39
(€5) [pm] 123.1 123.1 133.3
(ey) [pm] 0.02021 0.02111 0.0

(C\ERN?Si Sietse Buijsman | Modeling of Insertion Devices in Xsuite 10 October 2025 31
N



Undulator in SLS2.0: Tune and Chromaticity

Base Ring (bend model)
Without Wiggler

Analytic Wiggler (aligned)
Sliced Wiggler (aligned)

Analytic Wiggler (misaligned)
Sliced Wiggler (misaligned)

Qx
39.3737

39.3700
39.4182
39.4171
39.4135
39.4124

Qy
15.2251
15.2200
15.2222
15.1841
15.2270
15.1888

dQy
1.03928

0.999197

1.38289
1.37377
1.34358
1.33558

do,
1.53434
1.57039
1.57962
1.39486

1.60337
1.42358

 (Observations:

Sliced wiggler has difference on the order of 1071 in vertical chromaticity w.r.t. integrated wiggler

» Induced by sextupoles, but partially canceled by longitudinal fields? Need to investigate.

Misalignment had 1072 effect on chromaticity, 1073/10~* effect on tunes

Tune differences on the order of 1073 depending on slicing/integrator
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SLS2.0: Beta Function

Bend h
Quad
20 4 Sext
_Bx
_By
15 -

50 100 150 200 250
silm]
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