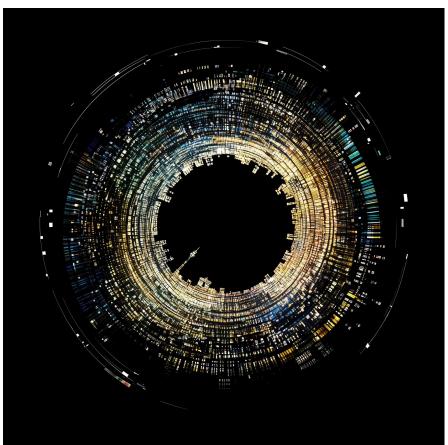


Status of the BESSY III Lattice

Moving towards the TDR Phase

P. Goslawski for the accelerator team 10th Low Emittance Rings Workshop 2025, DESY, Hamburg, Germany

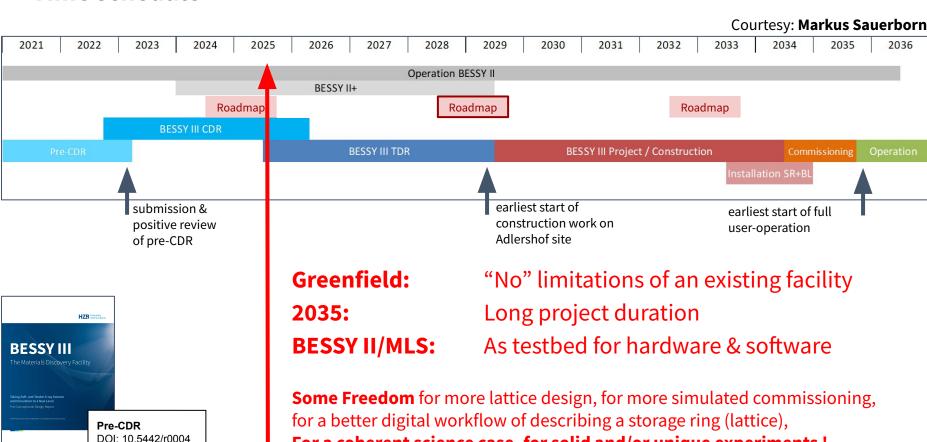
Moving towards/in the CDR/TDR phase

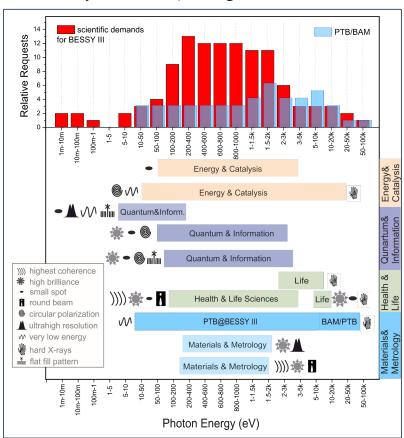

Overview

Goal

→ Design parameters

What do we have?


- → CDR, a 1st self-consistent lattice
- One bare lattice (two, three, four, ..., conceptional)
- What is next / What is going on?
 - One real technical lattice A simulated commissioning lattice
 - → injection, orbit/optics correction, TDR
- Outlook



Time schedule

For a coherent science case, for solid and/or unique experiments!

Courtesy: K.Holldack, Z.Hüsges

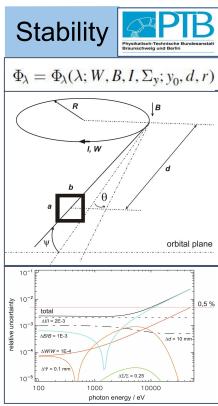
BESSY III Requirements & Objectives

6.

Facility parameters

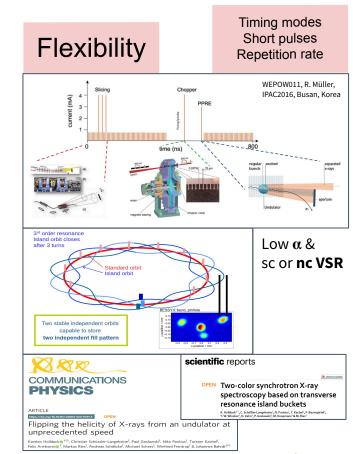
- 1. 1st undulator harmonics polarized up to 1 keV from conventional APPLE-II
- Diffraction limited till 1 keV
- 3. Stay in Berlin-Adlershof

- 4. Nanometer spatial res. & phase space matching
- 5. PTB/BAM metrology applications

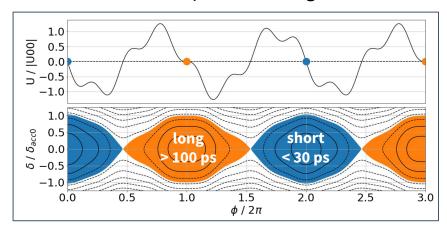

Already at BESSY II, a 3rd generation **without** combined function bends

Ring parameters

- Ring Energy **2.5 GeV** (1.7 GeV)
- 2. Emittance **100 pm rad** (5 nm rad)
- 3. Circumference **350 m 16 straights @ 5.6 m**(240 m @ 4 m)
- 4. Low beta straights & round beams
- 5. Metrology source Homogenous bends

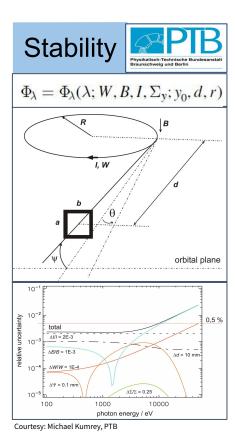

Measuring he field at the source point with a NMR probe in a volume of 10x10x10 mm

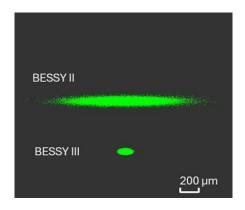
Momentum > **1.0e-4** compaction factor


Courtesy: Michael Kumrey, PTB

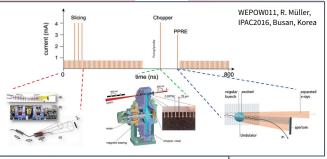
Objectives for Lattice Design

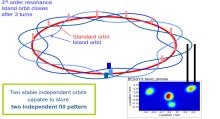
Higher-Harmonic cavity¹ + Variable Pulse Length Storage Ring


- 3rd and 3.5th harmonic (1.5 GHz & 1.75 GHz)
 cavities
 - Increase lifetime and relax IBS
 - Allow longitudinal beating scheme (short + long bunches)
- → Preservation of 10 ps bunch length


Active harmonic EU cavity¹

Objectives for Lattice Design


We want more then emittance.
Emittance with
Stability & Robustness & Flexibility!


Emittance with relaxed nonlinear beam dynamics & at least one metrology bend

Flexibility

Timing modes Short pulses Repetition rate

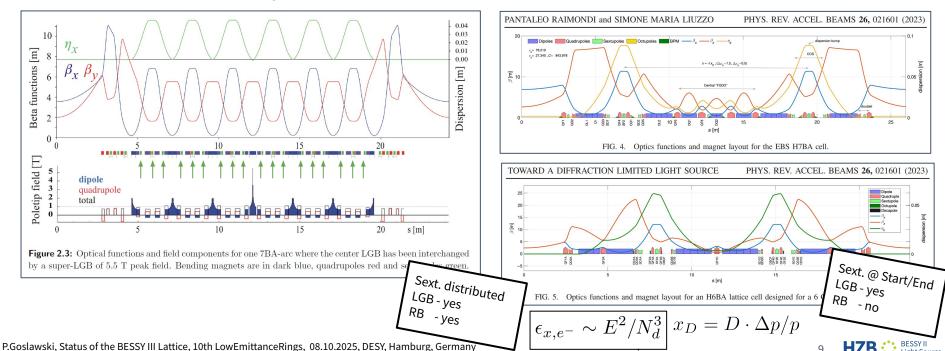
Low α & sc or **nc VSR**

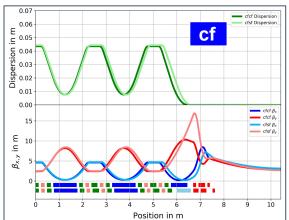
OPEN Two-color synchrotron X-ray spectroscopy based on transverse resonance island buckets

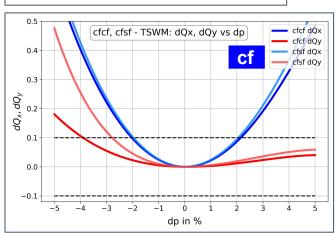
ARTICLE

| K. Holder | C. College Lawyein
| William | C. Artif | C

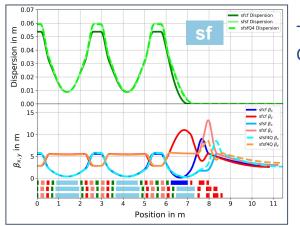
of & Johannes Bahrdt¹⁸⁸

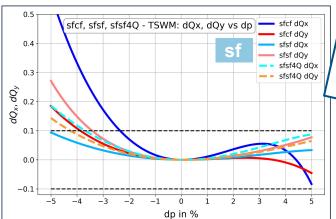

What do we have? - A starting point: the HO-MBA


The Higher Order Achromat, HO-MBA


- MAX IV, SLS 2.0 ... up to 3 GeV
 - A. Streun, J. Bengtsson, S. Leeman, et al.

The Hybrid, HMBA

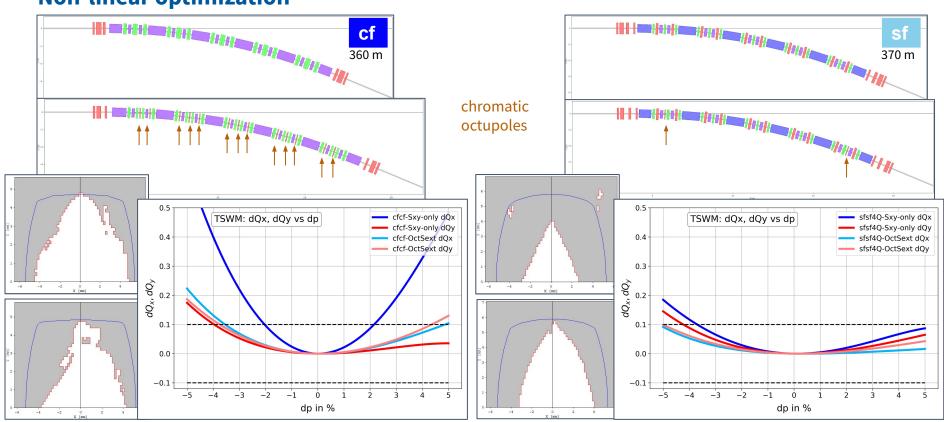

- ESRF-EBS, PETRA IV ... above 3 GeV
 - P. Raimondi



More than one BESSY III lattice candidate

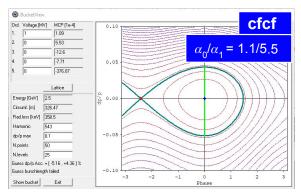
TSWM Chromatic Tune Shift

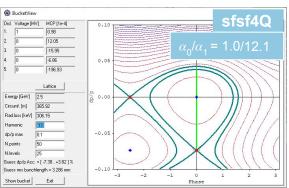
With two sextupole families only: Sx, Sy

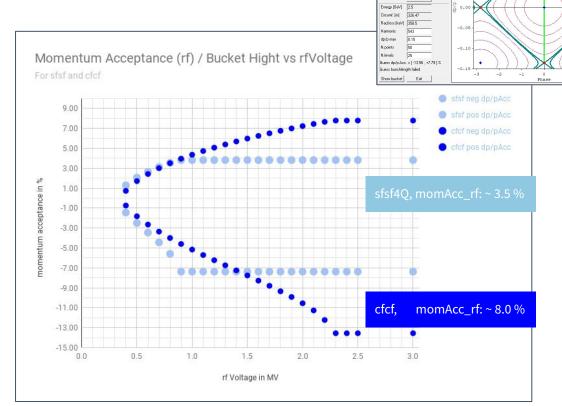


The flatter the curve the better → Robustness, Lifetime

$$\frac{1}{\tau_t} = \frac{N r_e^2 c}{8\pi} \frac{1}{\sigma_x \sigma_y \sigma_s} \frac{1}{\gamma^2 \delta_{acc}^3} D(\zeta)$$

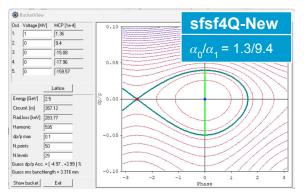

Non-Linear Beam Dynamics - Sextupole Split Up

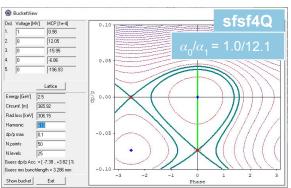

Non-linear optimization

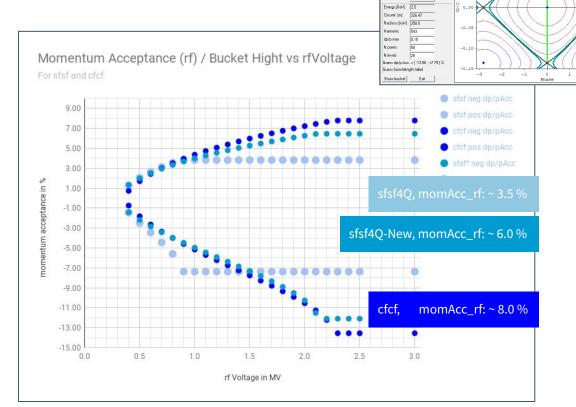


Limiting the momentum acceptance in the longitudinal plane

• cfcf, sfsf4Q

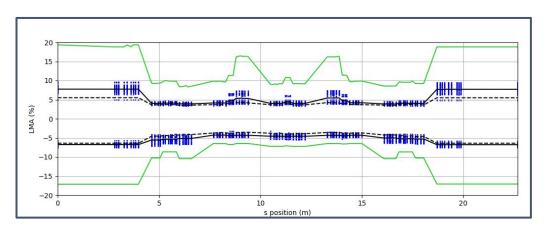


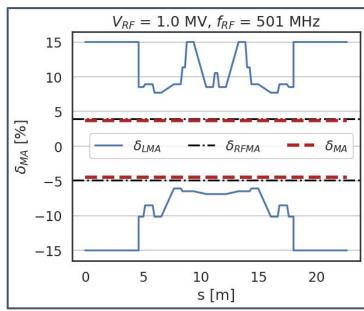

Thanks to A.Streun


> -12.6 -7.71 -376.07

Limiting the momentum acceptance in the longitudinal plane

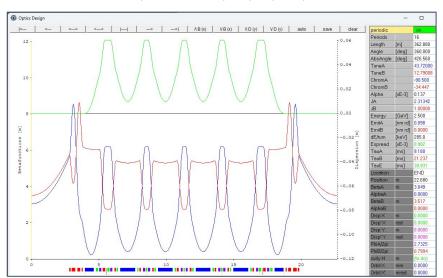
• cfcf, sfsf4Q, sfsf4Q-New

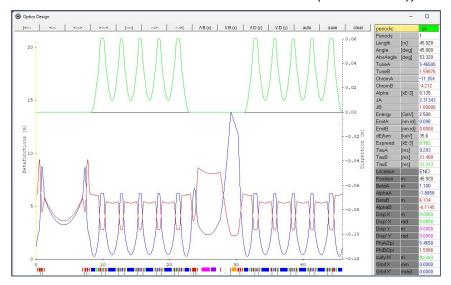

> -12.6 -7.71 -376.07


Local momentum acceptance

Chromatic tune shift and rf momentum acceptance well adapted/matched

Well balanced non-linear setup, by matching:


- Transverse chromatic tune shift momentum acceptance of the transverse dynamics
- The rf momentum acceptance, given by the long. dynamics


Bare Lattice(s) (HOA, hybrid not studied yet)

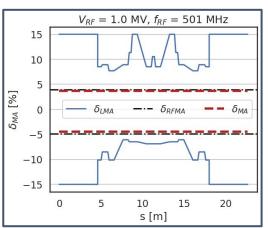
- Pure fundamental lattice periodic sector cell:
 Only big beam guiding elements: bends, quads, sexts
- Only two sextupole families (SF, SD) to correct natural chromaticy → start of non-linear dynamics
- First non-linear optimisation sextupole split up, octupoles

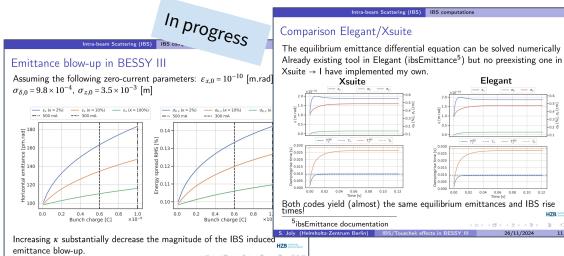
Simulated Commissioning Lattice Real Technical Lattice

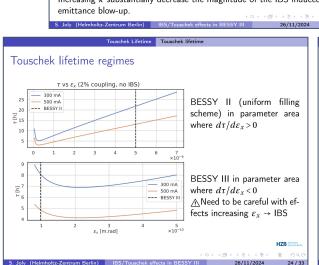
- Perturbing the periodic sector cell:
 Injection straight & straight ID adaption
- First non-linear optimisation sextupole split up, octupoles
- Robustness analysis: Misalignments, SC
 Correction Schemes: Orbit Correction (BPMs & Corr.), ...

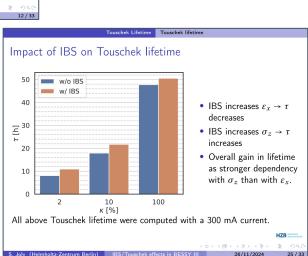
Real Lattice

What is next/going on? Courtesy: S.Joly


Real Technical Lattice, SC Collective Effects


IBS estimate... with Xsuite & elegant



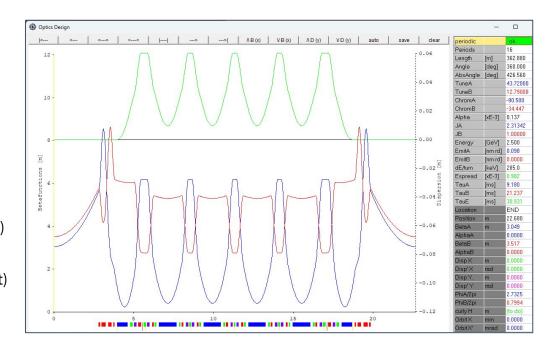

Touschek Lifetime... with pyAT, pySC, ...

0.015

Intra-beam Scattering (IBS) IBS computations

Xsuite

Elegant

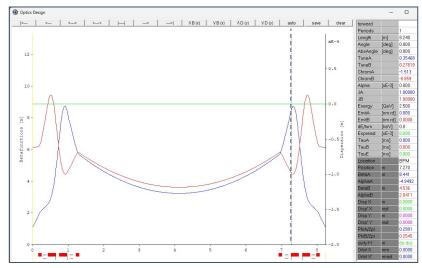

— Τ'^{RS} --- τ_x — Τ'^{RS} --- τ_x

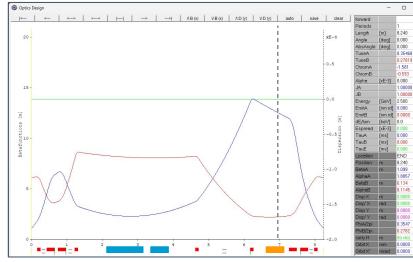
In progress

What is next/going on? Courtesy: M.Abo-Bakr, P.Goslawski

Real Technical Lattice, SC Injection

- How to inject into a/our 4th gen. MBA lattice?
 - 4-Kicker Injection, Single Kicker Injection
 - Non-Linear Kicker (NLK) Injection
 - Swap-In Swap-Out Injection
- For (horizontal) injection one needs large (horizontal) amplitude acceptance, given by the large beta_x-function
 - For 4-kicker injection it needs to be high at the septum (phase advance unimportant)
 - For NLK injection, it needs to be high at the non-linear kicker (phase advance important)

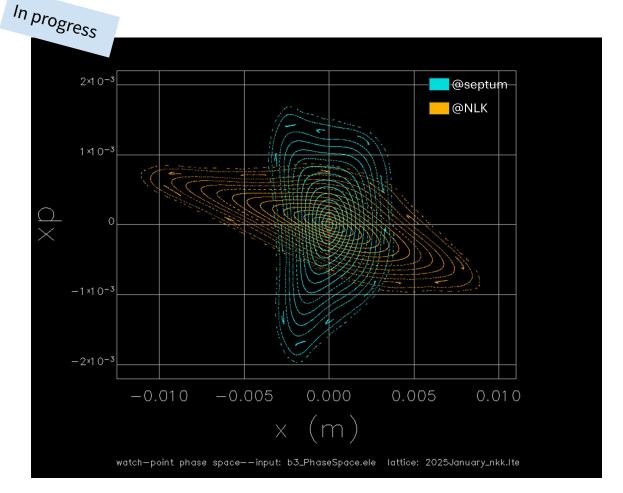



What is next/going on? Courtesy: M.Abo-Bakr, P.Goslawski

In progress

Real Technical Lattice, SC Injection

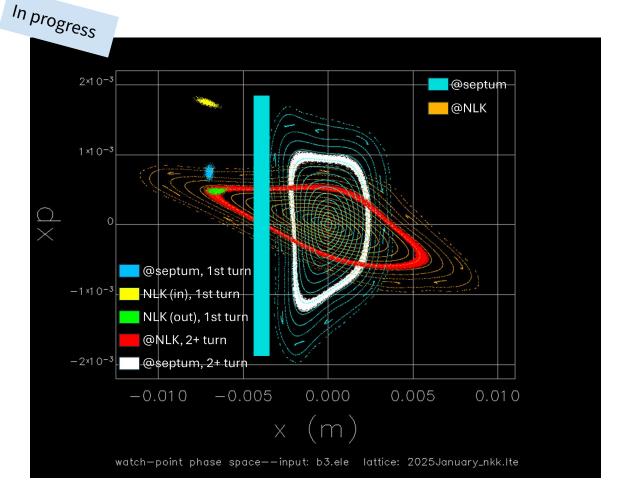
- How to inject into a/our 4th gen. MBA lattice?
 - 4-Kicker Injection, Single Kicker Injection
 - Non-Linear Kicker (NLK) Injection
 - Swap-In Swap-Out Injection
- For (horizontal) injection one needs large (horizontal) amplitude acceptance, given by the large beta_x-function
 - For 4-kicker injection it needs to be high at the septum (phase advance unimportant)
 - For NLK injection, it needs to be high at the non-linear kicker (phase advance important)



What is next/going on? Courtesy: M.Abo-Bakr, P.Goslawski

Real Technical Lattice, SC Injection

- Horizontal phase space and injected bunch at
 - Septum
 - a
 - b
 - non-linear kicker

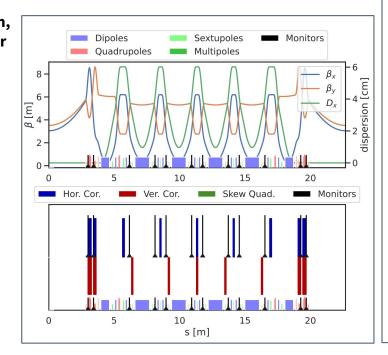

(

What is next/going on? Courtesy: M.Abo-Bakr, P.Goslawski

Real Technical Lattice, SC Injection

- Horizontal phase space and injected bunch at
 - Septum
 - From the injector
 - non-linear kicker
 - Before the kick
 - After the kick
 - As stored beam
 - at the septum
 - At the non-lin, kicker

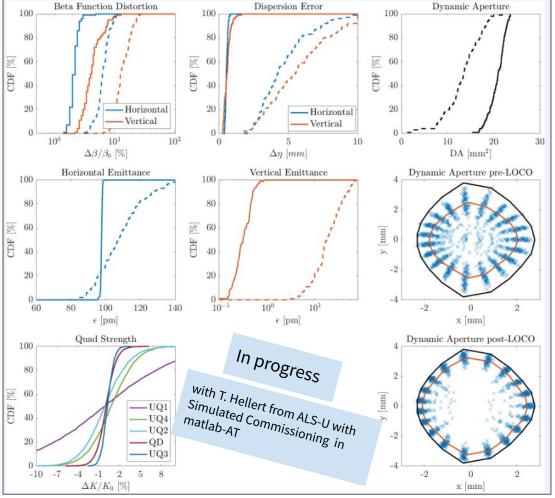
In progress


What is next/going on? Courtesy: S.Joly, B.Alberdi, M.Arlandoo

Real Technical Lattice, SC Orbit Correction, Optics Correction

 Orbit correction, BPM & corrector scheme with pyAT-SC, matlab-AT-SC

(elegant, opa)

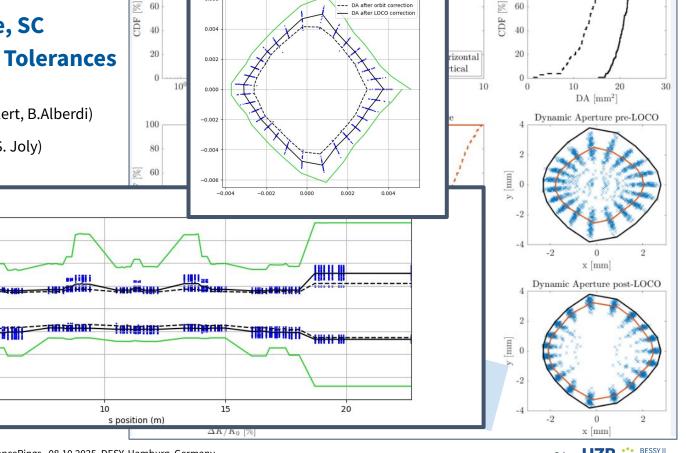


What is next/going on? Courtesy: T.Hellert, B.Alberdi

Real Technical Lattice, SC Robustness Analysis, Tolerances

- SC with matlab-AT-SC (T.Hellert, B.Alberdi)
- SC with pyAT-SC (L. Malina, S. Joly)

What is next/going on? Courtesy: T.Hellert, B.Alberdi


Real Technical Lattice, SC Robustness Analysis, Tolerances

- SC with matlab-AT-SC (T.Hellert, B.Alberdi)
- SC with pyAT-SC (L. Malina, S. Joly)

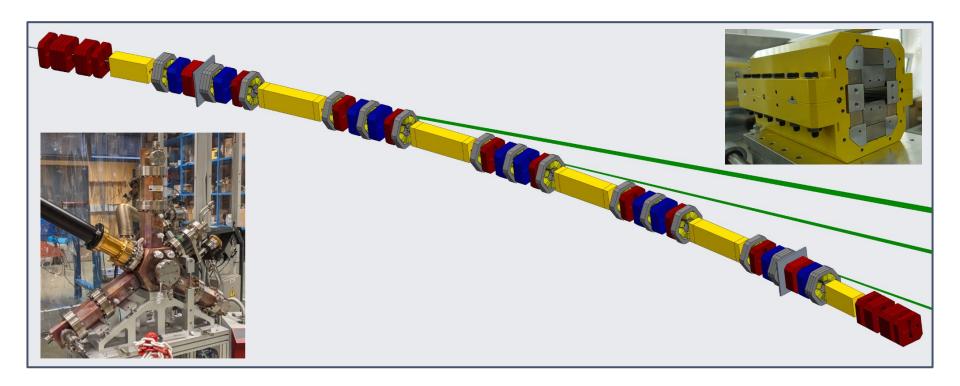
15 10

-10-15-20

LMA (%)

Dispersion Error

DA after orbit correction

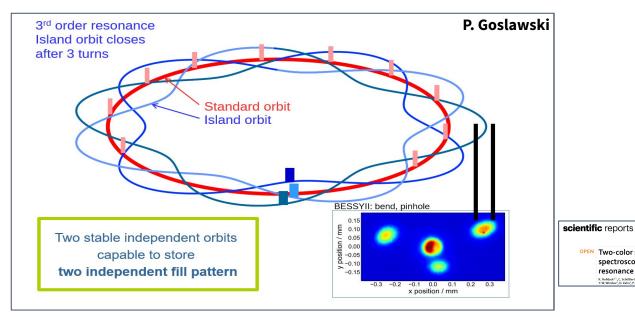

Beta Function Distortion

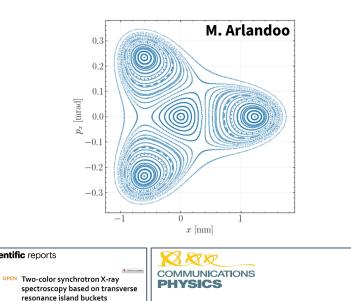
100

Dynamic Aperture

5

Questions?

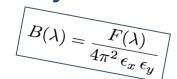


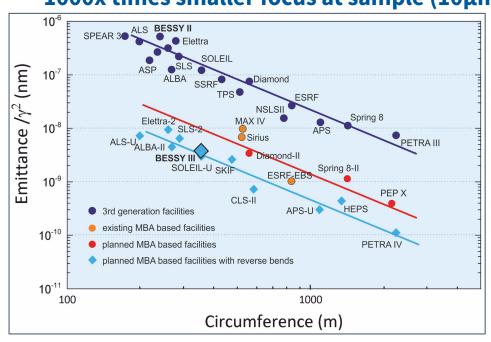

Backup Slides

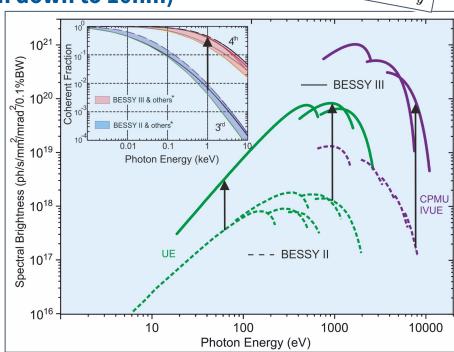
Transverse Resonance Island Buckets user mode

 Experience with Transverse Resonance Island Buckets (TRIBs) which was successfully demonstrated in BESSY II

Can be achieved in BESSYIII¹


unprecedented speed


Valuable addition to the user case!


Flipping the helicity of X-rays from an undulator at

BESSY III Requirements & Objectives

100x times more brightness than BESSY II & 1000x times smaller focus at sample (10µm down to 10nm)

In situ & operando, sample environment, material & metrology labs

→ Integrated Research Campus

BESSY III - Radiation Sources Preliminary Beamline-Portfolio

Undulators:

- 7x 100 eV up to 2 keV (3, 4)
- 3x up to 10 keV (8)
- 2x up to 20 keV

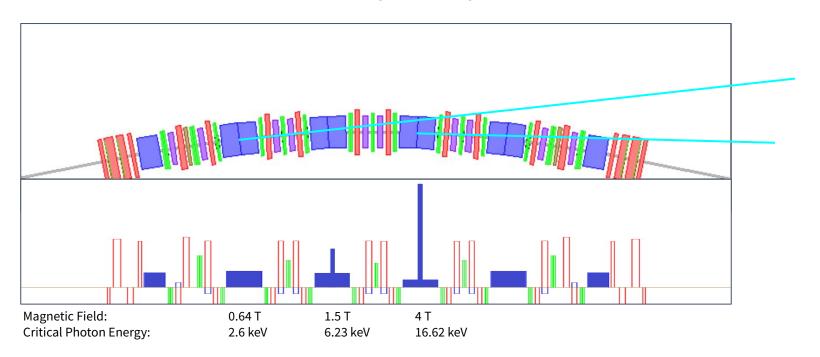
- ~ 40 mm period length
- ~ 20-30 mm period length
- ~ < 20 mm period length

Bending Beamlines:

- 9x up to 2 keV (3,4)
- 4x up to 20 keV (11, 14)

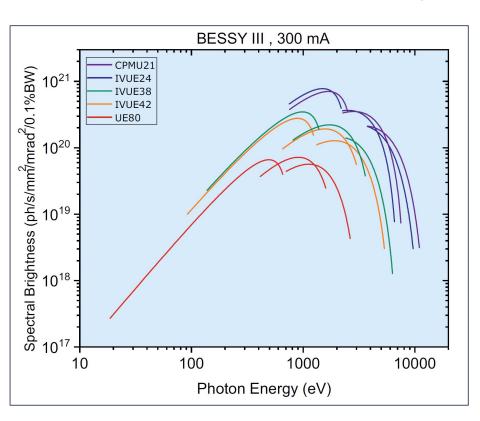
Undefined

• 5 keV - 120 keV - BAMline


11	PTB: PGM/EUV	60 eV – 1.85 keV	Reflectometry/Scatterometry Reflectometry/Scatterometry	Metrology for Industry Metrology for Industry
11	DIP PTB: FCM	1.7 keV-11 keV	X-ray radiometry/ X-ray reflectometry	Metrology
	PTB: PGM/RFA	80 eV – 2 keV	X-ray spectometry X-ray spectometry	Materials Metrology Materials Metrology
12	DIP PTB: white light	40 eV – 20 keV	Primary source standard BESSY III	Metrology
12	PTB: Tender X-ray	1 keV-10 keV	μ-XRF/(Gl)SAXS/Ptychography μ-XRF/(Gl)SAXS/Ptychography	Materials Metrology, Energy Materials Metrology, Energy
13	DIP PTB: XPBF/ESA	1 keV-3 keV	X-ray optics for astrophysics	in-line Metrology for Manufacturing
14	BAMline	5 keV – 120 keV	Diffraction, XRF, μCT Diffraction, XRF, μC	Materials Metrology Materials Metrology

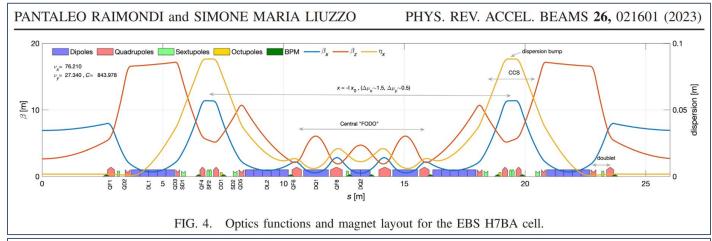
#	Name	Photon Energy	Main Methods	Main Applica Pro 10
		3,		, relimina
1	VUV to Hard	5 eV – 20 keV	XPS, HAXPES, NEXAFS, STXM XPS, HAXPES, NEXAFS, STXM	Catalysis, In progress
	DIP 20 eV – 1.5 keV UPS/XPS, 1 UPS, ARPE		UPS/XPS, NEXAFS, EXAFS, XPS, UPS, ARPES	Energy, Catalysis
2	Soft & Tender	100 eV - 4 keV	PES, HAXPES, TXM, XAS, XPCS Resonant Scattering, CDI	Energy (Batteries), Quantum Energy, Quantum
_	DIP	2- 14 keV	Diffraction/ EXAFS/XRF, NEXAFS	Energy, Quantum, Catalysis
	XUV to Soft	60 eV – 1.5 keV	BEIChem, XPS BEIChem, XPS	Catalysis, Chemistry Catalysis, Chemistry
3	DIP	2-14 keV	XRD/ EXAFS, WAXS, SAXS, HAXPES	Quantum, Energy Quantum, Energy
4	Magnetic Imaging	150 eV – 2 keV	Lensless Imaging, X-ray holography, XPCS STXM, Resonant Scattering, 3D mag. tomogr.	Quantum, Energy
	DIP	100 eV – 1.5 keV	XMCD, XAS with magnetic vector fields	Quantum, Energy, Catalysis Quantum, Energy, Catalysis
5	XUV Spectroscopy	5-200 eV	ARPES nano-ARPES	Quantum, Energy, Catalysis Quantum, Energy, Catalysis
	DIP	80 eV - 4 keV	NEXAFS, XPS	Catalysis, Energy, Quantum
6	Soft & Tender Imaging	180 eV-8 keV	TXM, FIB-TXM Tender TXM, Tomography	Life Sciences, Energy Life Sciences, Energy
	DIP	20 eV - 1.5 keV	Soft X-ray Dynamics	Catalysis, Energy, Quantum
7	Inelastic Scattering	180 eV – 3 keV	RIXS meV@1keV RIXS	Quantum, Energy, Catalysis Quantum, Energy, Catalysis
	DIP	20 eV - 1.5 keV	Soft X-ray Dynamics	open port
0	Spectro Microscopy	100 eV - 1.8 keV	(S)PEEM, PEEM, Ptychography nano-ARPES	Quantum, Energy, Catalysis Quantum, Energy, Catalysis
8	DIP	100 eV-4 keV	Broad band soft + tender X-ray spectroscopy	open port
9	Macromol. Crystallography	5-20 keV	X-ray Diffraction X-ray Diffraction	Life Sciences
	DIP	80 eV – 2 keV	Soft X-ray spectroscopy	open port
10	Multimodal Spectroscopy	20 eV – 8 keV	Multimodal Spectroscopy Time-resolved spectroscopy	open port open port
10	DIP	20 eV – 3 keV	Declined beamline, Multimodal spectroscopy	Catalysis

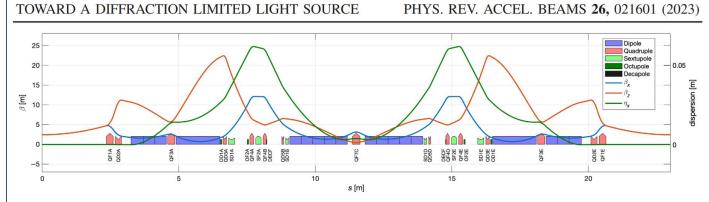
BESSY III - Bending Sources


Comparison of BESSY II / III - soft-to-tender X-rays (10 eV - 10 keV)

- Extract up to two bending beamlines per 6-MBA arc
- Some flexibility to adjust the critical photon energy with Longitudinal Gradient Bends (LGB)

BESSY III - Insertion Devices:

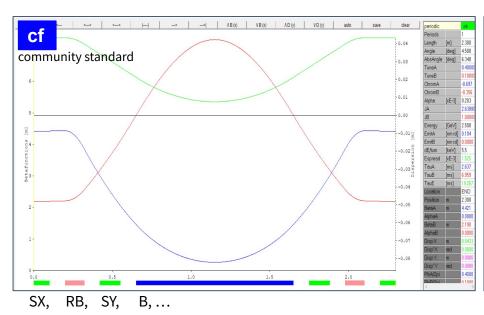

Undulators for soft- and tender X-rays

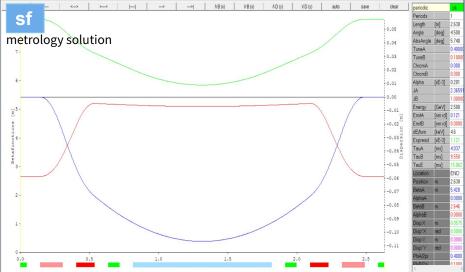


No.	Name	Photon Energy	ID or ID combination
1	VUV to Hard	5 eV – 20 keV	UE80 + CPMU21
2	Soft and Tender	100 eV – 4 keV	IVUE 42-24 (DOPU)
3	XUV to Soft	60 eV – 1.5 keV	U70
4	Magnetic Imaging	150 eV – 2 keV	IVUE42
5	VUV Spectroscopy	5 eV – 200 eV	UE140 or UE150
6	Soft and Tender Imaging	180 eV – 8 keV	IVUE38
7	Inelastic Scattering	180 eV – 3 keV	IVUE42
8	Spectro-Microscopy	100 eV – 1.8 keV	UE56
9	Macromolecular Crystallography	5 keV – 20 keV	CPMU18
10	Multimodal Spectroscopy	20 eV – 8 keV	UE80 + IVUE24

4th Generation Lightsource Lattices

Development of Hybrid Lattice


Optics functions and magnet layout for an H6BA lattice cell designed for a 6 GeV, 72 cells SR lattice.

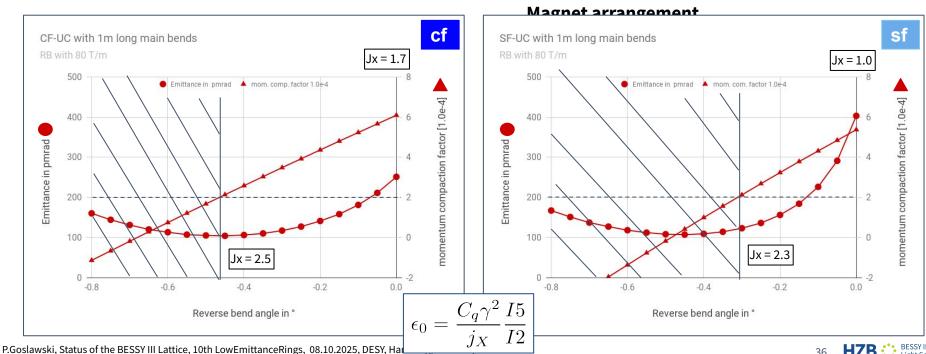

LEGO approach - the "one and only" (deterministic) MBA-Unit Cell (UC) for

- The two different MBA-UCs: cf & sf
- UC (4.5°): Q_xy = (0.4, 0.1), Chrom_xy = (0.0, 0.0)

and for the hardware specifications of our project

Impact of reverse bend on alpha & emittance Magnet arrangement

SX, RB, QD, SY, B, ...


LEGO approach - Unit Cell - Impact of Reverse Bend

The two different MBA-UCs: cf & sf

• UC (4.5°) : Q_xy = (0.4, 0.1), Chrom_xy = (0.0, 0.0)

and for the hardware specifications of our project

Impact of reverse bend on alpha & emittance

LEGO approach - Unit Cell - Magnet arrangement

- How to set up the MBA-UC?
- Magnet positioning/arrangement in that way, to reduce the sextupole strength for the chromatic correction → as less as possible non-linear power

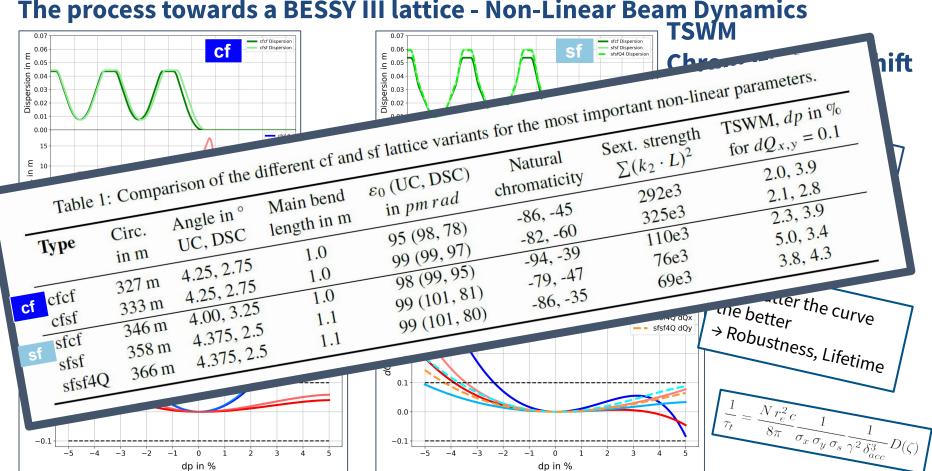
$$\xi_{tot} \sim \oint [k_2(s) \ D(s) - k_1(s)] \ \beta(s) \ ds$$

• The cf MBA-UC:

	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←	clear	periodic ok
		0.04	Periods 1 Length [m] 2.446 Angle [deg] 4.250
	7	0.03	AbsAngle [deg] 5.770 TuneA 0.40000
		0.02	TuneB 0.10000 ChromA -0.701
9.	•	0.01	ChromB +0.355 Alpha [xE-3] 0.249 JA 2.43029
8.		0.00	JB 1.00000 Energy [GeV] 2.500
	5.	-0.01	EmitA [nm rd] 0.095 EmitB [nm rd] 0.0000
7		B.	dE/tum [keV] 4.1 Espread [xE-3] 1.111
6		-0.02	TauA [ms] 4.075 TauB [ms] 9.903
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-0.03 B	TauE [ms] 17.382 Location END
7735		-0.04	Position m 2.446 BetaA m 4.782
		-0.05	AlphaA 0.0000 BetaB m 2.310
		-0.06	AlphaB 0.0000 Disp X m 0.0446
3.		-0.07	Disp'X red 0.0000 Disp'Y, m 0.0000
		-0.08	Disp'Y red 0.0000 PhiA/2pi 0.4000
			PhiB/2pi 0.1000 curty H m (to do)
J 1	0.0 0.5 1.0 1.5 2.0	0	OrbitX mm 0.0000 OrbitX mred 0.0000
	-0.10 Fhet/cpi 0.1000 Curly-H m (to do)		
0.0 0.5 1.0 1.5	2.0 DebitX mm 0.0000 DebitX mred 0.0000		

SetUp	Length	alpha	Emittance	RB angle	Nat Chrom	SUM(b3 * L) ² for Chrom = 0 SF, SD [1/m ²]
SX, RB, SY, B	2.446 m	2.5e-4	95 pm rad	-0.38 ° (k = 6.7) L = 0.163*2	-0.701, -0.355	2324.77 21.02, -26.84
RB, SX, SY, B	2.490 m	2.7e-4	95 pm rad	-0.26° (k = 6.8) L = 0.125 *2	-0.802, -0.278	3905.21 27.96, -34.22

LEGO approach - Unit Cell - Magnet arrangement


- How to set up the MBA-UC?
- Magnet positioning/arrangement in that way, to reduce the sextupole strength for the chromatic correction → as less as possible non-linear power

$$\xi_{tot} \sim \oint [k_2(s) D(s) - k_1(s)] \beta(s) ds$$

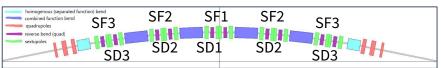
• The sf MBA-UC:

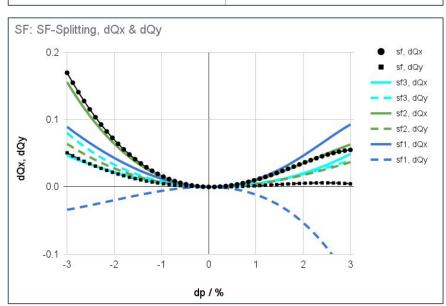
_			<	4>	><	>	> ∧B	(x) VB(x)	ΛD (y)	VD(y)	auto save	dear	periodic		ok
												20.05	Periods Length	[m]	2.670
	-		8 -												4.000
	l.	- ← ← →								/		0.04	AbsAngle	[deg]	
	I									/			TuneA		0.40000
	I		7 -									0.03	TuneB		0.10000
	>												ChromA		-0.751
		8 -				_						0.02	ChromB		-0.277
															0.201
	10:		6 -									0.01	JA		2.09922
		7.										0.00	JB		1.00000
												0.00		[GeV]	
	9.		E 5 -	\ /						1	/	-0.01	EmitA	[nm rd]	0.099
		Tar.		\ /						1	/	Ξ	EmitB dE/tum	[nm rd] [keV]	0.0000
		*	10 C	\ /						1	/	-0.02 g	Espread	[kE-3]	0.001
	0.		12.	\ /						1	/	10	TouA		6.178
		E 5.	Betafunctions A	Y						1	V	-0.03	TouB	[ms]	12.969
		251	ta.	/\						- /	1	10	TouE		14.397
		100	2	/ \						/		-0.04 FA	Location		END
	Ξ.	t l	3 -							/		-0.05			2.670
	6.	24-								/		0.00			5.468
•	8 \	Beta functions										-0.06	AlphaA		0.0000
	į \	~ /\	2 -										AlphaB		2.681 0.0000
	, s , s	3.							/	/		-0.07			0.0000
	3 \ /														0.0000
\neg	, a .											-0.08			0.0000
	\ \ \	2 -	1.												0.0000
												-0.09	PhiA/2pi		0.4000
	3.											-0.10	PhiB/2pi		0.1000
		,	0 -								-	3		m	(to do)
			0.	0.5	_	1.0	1	.5	2.0	_	2.5			mm	0.0000
	21								_	_			OrbitX	mrad	0.0000
								curty H		do)					
	, ,	0.0 0.5 1.0		1.5	2.0		2.5	OrbitX		1000					
_	"					_		OrbitX		1000					
					ниругрі										
	0 +	1.0 1.5 2.0			curly H	m (to do									
	0.0 0.5	1.0 1.5 2.0		2.5	Orbit X*	mm 0.000 mred 0.000									
					-OrbitX:	mineu 0.000	0								

	SetUp	Length	alpha	Emittance	RB angle	Nat Chrom	SUM(b3 * L) ² for Chrom = 0 SF, SD [1/m ²]
	SX, RB, QD, SY, B	2.670 m	2.0e-4	100 pm rad	-0.23 ° (k = 8.6) L = 0.175*2	-0.751, -0.277	901.43 10.56, -18.42
	SX, RB, SY, QD, B	2.610 m	2.1e-4	98 pm rad	-0.23° (k = 8.5) L = 0.14 * 2	-0.740, -0.295	1500.19 17.60, -20.98
slaw	RB, SX, QD, SY, B	2.700 m ce, 10th LowEm	2.0e-4 ittanceRings, 0	98 pm rad 8.10.2025, DESY, Ham	-0.19° (k = 8.4) blrg= Gerhany 2	-0.835, -0.232	2781.58 19.39, -31.86 38 HZB ∷ #ES

Non-Linear Beam Dynamics - Sextupole Split Up

Non-linear optimization


- Defining target parameters for non-linear optimization and "knobs"
- Target parameters: (benchmark MAX IV, SLS2):
 - Tune Shift With Momentum **TSWM**: ΔQx , $\Delta Qy \sim 0.1$ at $\Delta p = +-3\%$ (+-5%)
 - Tune Shift with Amplitude TSWA:
 ΔQx, ΔQy ~ 0.1 limits acceptance ~3mm


• Knobs:

- Chromatic Octupoles for 2nd order chromaticity
- Split up of chromatic sextupoles (TSWM + TSWA)

• Findings, Results:

- The two lattice candidates show an opposite behavior in order to reduce TSWM
 - SF3 with biggest impact at sf lattice
 - SF1 with biggest impact at cf lattice

Mismatch in momentum acceptance between longitudinal and transverse plane

Lattice variants	Mom.Acc. transverse plane $\delta_{\text{acc, x,y}}$ Chromatic Tune Shift TSWM, $Q_{x,y} = Q_{x,y}(\delta)$	Mom.Acc. longit. plane $\delta_{\rm acc,\ rf}$ rf Acceptance	Alpha buckets ${\rm Ratio\ between\ } \alpha_{\rm 0}/\alpha_{\rm 1}$
cfcf	2% → 3%	8%	1.1 / 5.5
sfsf4Q	4% → 5%	~ 3.0%	1.0 / 12.1

D. Robin, E. Forest et al., "Quasi-isochronous storage rings", Phys. Rev. E 48, 2149, (1993)

• The often forgotten longitudinal plane ...

$$x = x_{\beta} + D \, \delta + D_1 \, \delta^2$$

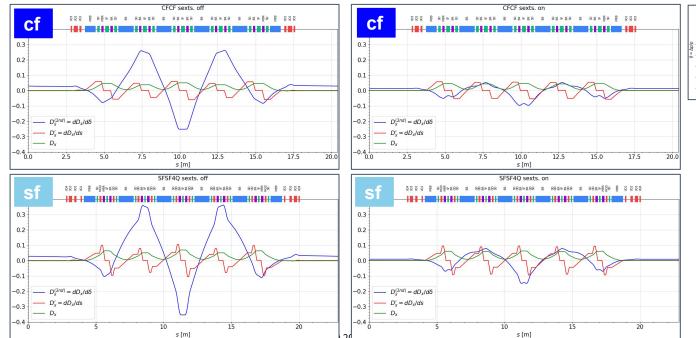
 Non-linearities in the longitudinal plane limits the momentum acceptance

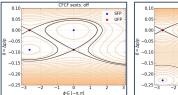
$$\Delta L/L_0 = \alpha(\delta) \ \delta = \alpha_0 \ \delta + \alpha_1 \ \delta^2 + \dots$$

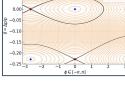
 \circ α_1 , is the 2nd order path lengthening is the longitudinal chromaticity

$$\alpha_0 = \frac{1}{L_0} \oint \frac{D}{\rho} ds$$
 $\alpha_1 = \frac{1}{L_0} \oint \frac{D'^2}{2} + \frac{D_1}{\rho} ds$

• Ratio of α_0/α_1 defines the alpha bucket (unstable off-momentum fix point), and starts to limit the rf momentum acceptance

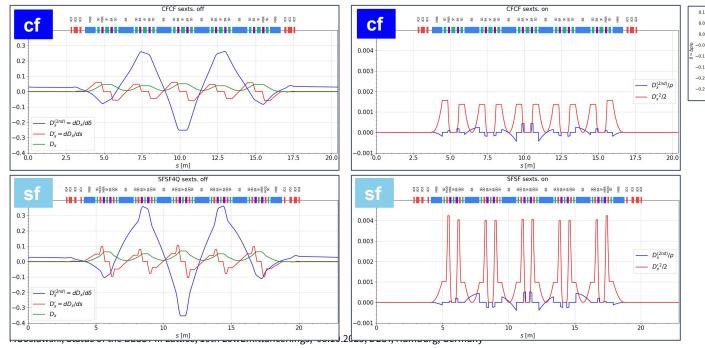

Natural Chromaticity in long. plane & Knobs for Correction (or Attack)

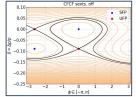

- Ratio of α_0/α_1 limits the rf momentum acceptance
- Increase α_0 , reduce RB &/or lengthen main bend

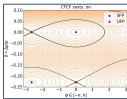

$$\alpha_0 = \frac{1}{L_0} \oint \frac{D}{\rho} \ ds$$

$$\alpha_0 = \frac{1}{L_0} \oint \frac{D}{\rho} ds$$
 $\alpha_1 = \frac{1}{L_0} \oint \frac{D'^2}{2} + \frac{D_1}{\rho} ds$

Reduce α_1 , figure out what is the biggest contribution




Natural Chromaticity in long. plane & Knobs for Correction (or Attack)


- Ratio of α_0/α_1 limits the rf momentum acceptance
- Increase α_0 , reduce RB &/or lengthen main bend

$$\alpha_0 = \frac{1}{L_0} \oint \frac{D}{\rho} ds$$
 $\alpha_1 = \frac{1}{L_0} \oint \frac{D'^2}{2} + \frac{D_1}{\rho} ds$

Reduce α_1 , figure out what is the biggest contribution

The sf-UC with the additional vertical focussing quadrupole with very good separation of beta_xy functions at the chromatic sextupoles which guarantees for good TSWM,

generates small mom. Acc. in the longitudinal plane

Longitudinal momentum acceptance

Improving the sfsf4Q lattice

Lattice variants	Mom.Acc. transverse plane $\delta_{\text{acc}, x,y}$ Chromatic Tune Shift TSWM, $Q_{xy} = Q_{xy}(\delta)$	Mom.Acc. longit. plane $\delta_{\rm acc,\ rf}$ rf Acceptance	Alpha buckets Ratio between α_0/α_1
cfcf	2% → 3%	~ 8%	1.1 / 5.5 = 0.2
sfsf4Q	4% → 5%	~ 3.5%	1.0 / 12.1 = 0.08
sfsf4Q*	4% → 5%	~ 5% - 6%	1.3 / 9.4 = 0.14

- Countermeasures to improve the momentum acceptance in the longitudinal plane: \rightarrow Increase α_0 and decrease α_1
- Reduction of the main bending angle (4.375° ---> 4.25°) and rebalancing bending into DSC (2.5° ---> 2.75°)
 - This allowed for reducing the reverse bend angle
- Omitting the reverse bend in the DSC

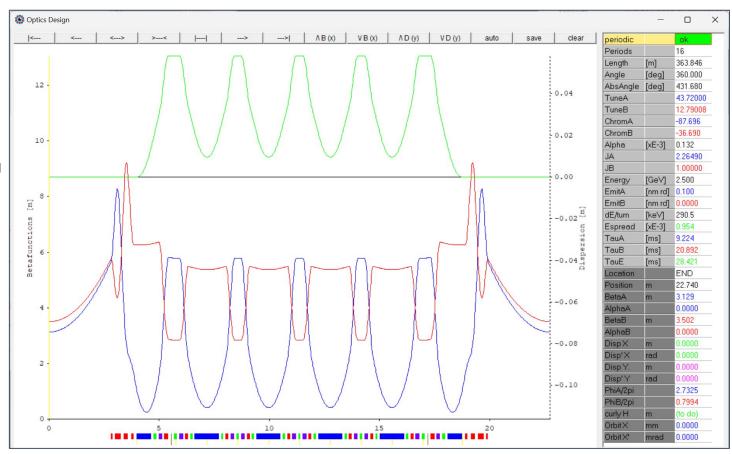
A lattice for the CDR/TDR phase

Baseline lattice

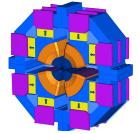
Circ.: C = 360mEnergy: E = 2.5 GeV

Straights: 16 # bunches: ~ 600

Zero Current


Emittance: $\epsilon_x = 100 \text{ pm rad}$

Zero Current


Bunch Length: 8-10 ps (rms)

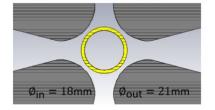
momAcc: 4-5% Touschek LT: > 5 h 300 mA, 2% coupling

All numbers for a bare lattice.

Courtesy: Jens Völker

First design idea for magnets

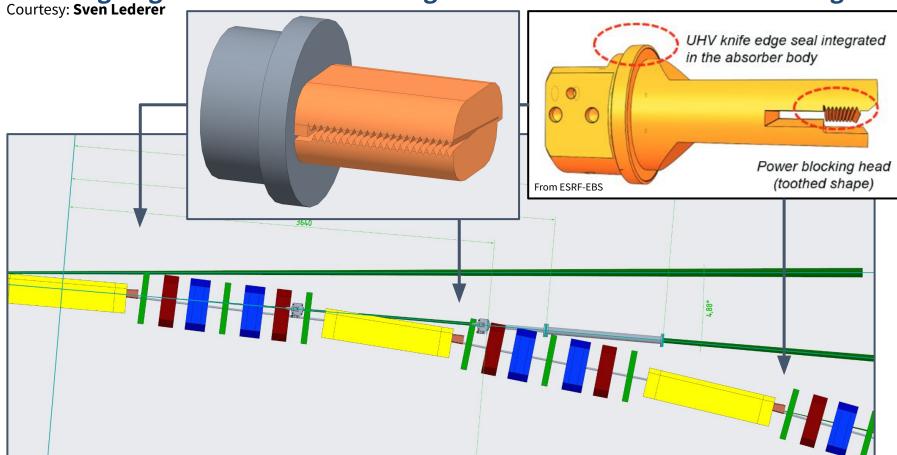
Towards a combination of permanent & electro magnets


	Dipole	Quadrupole	Reverse Bends	Sextupole
Field/gradient	0.6-0.8 T	50-90 T/m	80 T/m + 0.18-0.22 T	<4000 T/m²
Quality	$0.1 \cdot 10^{-4}$	~1 · 10 ⁻⁴	~1 · 10 ⁻⁴	tbd
Stability		<1	· 10 ⁻⁴	
Variation	\ <u>-</u>	10%	5%	100%
Power consumption (PM / electro)	0 kW / 290 kW	<25 kW	>100 kW	

- 1. Strong magnetic fields
- -> high magnetic field energy / electric power

2. High field Quality

- -> high mechanical and alignment precision
- 3. Stable field operation
- -> minimization of ripple and vibrations
- 4. Small parameter Variation -> constant magnet operation next to design value


min. aperture radius for all magnets: 12.5mm

	BESSY III conventional	BESSYIII PM
96 Dipoles	ca. 290 kW	0 kW
446 Quadrupoles	ca. 600 kW	< 25 kW
NL Multipoles (240 Sextupoles, 32 Octupoles)	ca. 13	0kW
Total	ca. 1000 kW	ca. 150 kW

What is going on?
Courtesy: Sven Lederer

Pushing the lattice towards technical design

