

Direct measurement of the neutrino mass: KATRIN and Troitsk

ASTROPARTICLE PHYSICS Workshop on Russian-German Perspectives, December 7 & 8, 2011, Dubna

Christian Weinheimer Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Germany

> Vladislav Pantuev Institute for Nuclear Rresearch, Russian Academy of Sciences, Moscow

Introduction
Status of the KATRIN experiment

Systematic uncertainties of KATRIN & Troitsk contributions

Conclusions

Positive results from voscillation experiments

atmospheric neutrinos (Kamiokande, Super-Kamiokande, ...)

accelerator neutrinos (K2K, T2K, MINOS, OPERA, MiniBoone)

(Homestake, Gallex, Sage, Super-Kamiokande SNO, Borexino) Matter effects (MSW)

reactor neutrinos (KamLAND, CHOOZ, ...)

 \Rightarrow non-trivial v-mixing

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \cdot \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

with:

 $0 < \sin^2(2\theta_{13}) < 0.15 (90\% \text{ CL})$ $\sin^2(2\theta_{12}) = 0.87 \pm 0.03$ large ! $\sin^2(2\theta_{23}) > 0.92 (99.7\% \text{ CL})$ max ! $7.39 \ 10^{-5} \text{ eV}^2 < \Delta m_{12}^{-2} < 7.79 \ 10^{-5} \text{ eV}^2$ $2.30 \ 10^{-3} \text{ eV}^2 < |\Delta m_{23}^{-2}| < 2.56 \ 10^{-3} \text{ eV}^2$ $\Rightarrow \mathbf{m}(\mathbf{v_j}) \neq \mathbf{0}, \text{ but unknown !}$ 2011: start to require description by 3-flavour oscillations

Need for the absolute v mass determination

Astroparticle Physics Russian-German, Perspectives

Direct determination of m(v_a)

from β decay

very low background

V. Pantuev & C. Weinheimer

Astroparticle Physics Russian-German, Perspectives 4

(or bolometer for ¹⁸⁷Re)

Ultrahigh resolution & huge count rate MAC-E-Filter

Astroparticle Physics Russian-German, Perspectives 6

The windowless gaseous tritium source demonstrator

Electromagnetic design: magnetic fields

V. Pantuev & C. Weinheimer

Astroparticle Physics Russian-German, Perspectives 9

Inside main spectrometer: wire electrode system & LN2 baffles

Avoid background by secondary electrons from cosmic rays, environmental gammas & from Radon decays

Astroparticle Physics Russian-German, Perspectives 10

The electron detector (US contribution)

Requirements

- detection of β -electrons (mHz to kHz)
- high efficiency (> 90%)
- low background (1 mHz) (passive and active shielding)
- good energy resolution (1 keV)

Properties

- 90 mm Ø Si PIN diode
- thin entry window (50nm)
- detector magnet 3 6 T
- post acceleration (30kV) (to lower background in signal region)
- segmented wafer (148 pixels)
 - → record azimuthal and radial profile of the flux tube
 - \rightarrow investigate systematic effects
 - \rightarrow compensate field inhomogeneities

- precision HV divider (PTB), monitor spectrometer beamline

Long way from measured data/numbers to physical result:

- Simulation
- Data reconstruction
- Calibrations
- Corrections
- Systematic effects
- Estimation of systematic errors

hinum Neutrino

• Effect of magnetic trapping

• Electron energy losses by multiple scattering

2.0

1.8 1.6

1.4

0.6

0.4 0.2

0.0

100

200

Ē

€ ^{1.0} 0.8

Systematic effects and errors are the major problems

What experience at Troitsk v-mass tell us?

Our estimate is m²= -0.67 ±1.89_{stat} ±1.68_{syst} eV

300

(eV)

400

500

- Column density calibration and monitoring
- Correction on final states of T_2 ->T ³He

Measurement of electron scattering on H_2 at 14, 18, and 25 keV. New data on excitation and ionization spectra obtained with spectrometer resolution of about 1 eV.

Electron energy losses by scattering in H_2

The same, at different energies

- Recently achieved results:
 - Measurement of electron scattering on H₂ at 14 keV, 18 keV, 25 keV. New data on excitation and ionization spectra obtained with spectrometer resolution of about 1 eV.
 - Preliminary measurement of a possible shift of 30.5 keV ^{83m}Kr lines in WGTS filled with H2.

- Plasma is radially confined by the longitudinal B-field (no transverse mobility)
- There is a very good longitinal confinement by magnetic field lines ("short-cut")
- Plasma is neutralized by low energy electrons (from inelastic scattering)
- Potential in source is defined by "potential defining rear wall"
- Escaping non-neutralized ions are drifted out by transversal E-field

Russian-German cooperation
within KATRIN:A.F. Nastoyashchii, N.A. Titov, I.N. Morozov, F. Glück and E.W. Otten,
Fusion Science and Technology, 48 (2005) 743

V. Pantuev & C. Weinheimer

Astroparticle Physics Russian-German, Perspectives 17

Another serious systematics for Troitsk/KATRINtype of the Windowless Gaseous Tritium Source are possible effects in charged plasma:

- Tritium decay produces fast electrons and slow moving positive daughter ions.
- Large positive charge and potential would build up in WGTS.

How well it will be compensated by primary and secondary electrons could be investigated by small admixture of ^{83m}Kr isotope with mono energetic electrons.

- Complete measurements of electron scattering on H₂, D₂ and T₂ in 14-30 keV electron energy range.
- Investigation of systematic effects of a possible shift 30.5 keV L₃ ^{83m}Kr line in WGTS filled with H₂, D₂ and T₂.
- Such measurements are extremely useful for future KATRIN measurements and corrections

Conclusions

Neutrino mass is very important for particle, astrophysics and cosmology

KATRIN is a direct neutrino mass experiment for particle and astroparticle physics with 0.2 eV sensitivity complementary to $0\nu\beta\beta$ searches and cosmological analyses

2012/13 - commissioning of spectrometer & detector - commissioning of tritium source & elimination lines 2013 (?)- regular data taking for 5-6 years (3 full-beam-years)

The Troitsk nu mass setup plus the Troitsk group could contribute strongly to investigate the systematics !

