IceCube & KM3NeT.

Towards a Global Neutrino Observatory

Alexander Kappes Astroparticle Physics – Workshop on German-Russian Perspectives Dubna, 8. Dec. 2011

HUMBOLDT-UNIVERSITÄT ZU BERLIN

Outline

- Introduction
- Neutrino telescopes
 - IceCube
 - KM3NeT
- Future plans

Cosmic rays 99 years after their discovery

The big questions are:

- what and where are the cosmic particle accelerators?
- what is the composition of the cosmic rays?
- what is the nature of dark matter?

Answering them requires:

- information from all messengers (photons, neutrinos, cosmic rays)
- models of sources and fluxes (acceleration, environment, propagation)

Neutrino flux predictions

- Early predictions in some cases too optimistic (wrong γ-ray measurements, no v oscillation, no high-energy cut-offs)
- All current observations and source models (Galactic & extragalactic) point to the need of (multi) km³-class detectors

Principle of neutrino detection

Turn a large volume of ice/water into a particle detector

Time & position of hits ↓ µ (~ v) trajectory

Light intensity Energy

Backgrounds

Sky coverage

Sky coverage

Neutrino Telescope Projects

Physics with neutrino telescopes

Physics with neutrino telescopes

Cosmic accelerators	Diffuse fluxes	Dark Matter & Exotic Physics	
Point-like sources(SNRs, binaries)	All-sky fluxes (e.g. cosmogenic)	Indirect DM search (Sun, Galactic halo)	
 Extended sources (SNRs, molecular clouds) 	Galactic planeExtended structures	 Magnetic monopoles, Q-balls, I orentz invariance 	
☆ Transients (GRBs, AGN flares)		violation	
Cosmic rays	Supernova explosions	Neutrino Properties & Particle Physics	
😪 Anisotropy	😪 Galactic/LMC SNe	😪 Neutrino oscillations	
High-energy shower cores	☆ Phases☆ Neutrino hierarchy	 ☆ Heavy flavors in showers ☆ K/π ratio in showers 	
		😪 Cross sections at	

- /ers
- very high energies

The IceCube observatory

Completed since Dec. 2010

• IceTop

Air shower detector

IceCube
 86 strings (5160 PMTs)
 Instrumented volume: 1 km³

Deep Core

densely instrumented central region (8 strings)

Southern hemisphere

• 107,569 events (30% upgoing, livetime 723 d)

Southern hemisphere

- 107,569 events (30% upgoing, livetime 723 d)
- Source list: 13 Galactic, 20 extragalactic

Southern hemisphere

- 107,569 events (30% upgoing, livetime 723 d)
- Source list: 13 Galactic, 20 extragalactic

Upper limits on diffuse neutrino fluxes

Upper limits on diffuse neutrino fluxes

Alexander Kappes, Astroparticle Physics - Workshop on German-Russian Perspectives, 8.12.2011

Fireball model of GRBs

Fireball model of GRBs

- Protons from n-decay fitted to cosmic-ray spectrum
- Photons from π^{o} -decay cascade down in CMB

KM3NeT: A multi km³-scale v telescope in the Mediterranien Sea

Design aspects

- Investigation of technical solutions during Design Study (2006–2009)
 - optical sensors
 - vertical structure
 - seafloor layout
 - data network
 - electrical network
 - deployment

- Agreement on a single design in 2010 (backup solutions for critical components)
- Multi-site installation possible (no significant performance decrease)
- Seafloor layout still subject to optimization
- Possibly first data in 2014

Design aspects: Optical sensors

Multi-PMT DOM

- 31 small PMTs (~3 times that of a 10" PMT)
- Almost uniform coverage
- Photon counting
- Minimize # pressure transitions
- All electronics inside
- All identical units

Scientific focus

Geographical location

 \rightarrow field of view includes inner Galactic plane & center

Optical properties of sea water

 \rightarrow excellent angular resolution

Envisaged budget of 220–250 MEuro

(up to now: France 20M, Italy 22M, NL 8M, Romania 2M, Greece(?) 50M)

 \rightarrow large effective neutrino area

Observation of Galactic sources (SNRs, microquasars, binary systems ...)

Performance: Case study RXJ1713

- Strongest Galactic γ-ray source
- Hadron or electron origin?
- Sensitivity (308 towers):

dist.	sign.	years	signal	bkg
180m	5σ	12.1	41	51
130m	5σ	8.0	22	13
130m	3σ	2.9	7.9	4.8

Potential for improvements (trigger, reconstruction, unbinned analysis, energy estimator, source morphology)

 $\rightarrow 5\sigma$ in 5 years appears to be feasible

Sensitivities to point-like sources

ANTARES (803 days, prel.)

Towards a Global Neutrino Observatory

- Critical situation for neutrino astronomy (no signal, large funds required) \rightarrow need to coordinate and strengthen our efforts
- Recommendation in ASPERA roadmap:

"The IceCube and KM3NeT collaborations are encouraged to strengthen cooperation, with the goal to form a future Global Neutrino Observatory."

• How GNO could fit into the picture:

- "Umbrella" over (all) parties of neutrino astronomy
- Partners autonomous, independent entities participating in GNO
- Forum for exchanges and consultations which can represent neutrino astronomy vs. science and science policy communities

Towards a Global Neutrino Observatory

- Critical situation for neutrino astronomy (no signal, large funds required)
 → need to coordinate and strengthen our efforts
- Recommendation in ASPERA roadmap:

"The IceCube and KM3NeT collaborations are encouraged to strengthen cooperation, with the goal to form a future Global Neutrino Observatory."

• How GNO could fit into the picture:

- "Umbrella" over (all) parties of neutrino astronomy
- Partners autonomous, independent entities participating in GNO
- Forum for exchanges and consultations which can represent neutrino astronomy vs. science and science policy communities

Going to lower and higher energies

Going to lower and higher energies

Going to lower and higher energies

Conclusions

- Rich astro (and particle) physics program for neutrino telescopes
- Source models and measurements show that (multi) km³-scale telescopes are needed to detect Galactic and extragalactic sources
- IceCube starts to reach into discovery region
 - \rightarrow fair chance for discoveries but by no means guaranteed
 - \rightarrow starts to close in on GRBs
- Need for a multi-km³ scale detector in the Northern hemisphere
- Strengthen community and exploit synergies through a Global Neutrino Observatory initiative

SPONSORED BY THE

Federal Ministry of Education and Research

