The HiSCORE Project

M. Tluczykont, D. Horns, D. Hampf, R. Nachtigall, U. Einhaus, M. Kunnas, M. Büker University of Hamburg

> G. P. Rowell School of Chemistry and Physics, Adelaide

L. Kuzmichev, V. Prosin, L. Sveshnikova, E. Korosteleva

MSU

V. Zirakashvili, V. Ptuskin,

IZMIRAN

R. Wischnewski, C. Spiering

DESY

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

DFG Deutsche Forschungsgemeinschaft Outline The HiSCORE detector
Physics
Hardware status

HRJRG

HRJRG-303 Helmholtz Russia Joint Research Group

"Measurements of Gamma Rays and Charged Cosmic Rays in the Tunka-Valley in Siberia by Innovative New Technologies"

Starting 2012

G. Rubtsov, I. Tkatchev (INR)

- A. Konstantinov, L. Kuzmichev (MSU)
- R. Vasilyev, N. Budnev (ISU)
- R. Wischnewski, C. Spiering (DESY)
- F. Schröder, A. Haungs (KIT)
- M. Tluczykont, D. Horns (*U. Hamburg*)

HiSCORE and Radio detectors @ Tunka

Innovation Proof-of-principle Synergies

THE HISCORE DETECTOR

Hiscore

The Hundred*i Square-km Cosmic ORigin Explorer

- Cosmic-rays: 100 TeV < E_{CR} < 1 EeV
- Gamma-rays:
 Eγ > 10 TeV
- Large area: up to few 100 km²
- Wide-angle: ~ 0.6 sr
- **Concept:** non-imaging Cherenkov technique

czykor, Latest version: SCORE explicitly mentioned

- Ultra-High energy regime: **need large effective area !**
- Imaging ACTs: > 10000 channels / km²
- Non-imaging Cherenkov light-front sampling HiSCORE: ~200 channels / km²

- Ultra-High energy regime: need large effective area !
- Imaging ACTs: > 10000 channels / km²
- Non-imaging Cherenkov light-front sampling HiSCORE: ~200 channels /=km²

Gamma-hadron separation:

 a) shower depth vs. energy
 b) signal rising edge
 12/08/11 HiSCORE - Martin.Tluczykont@desy.de

HiSCORE @ Tunka

Within HRJRG:

- → Build an engineering array at the Tunka site HiSCORE-EA \rightarrow 1 km²
- Proof-of-principle
- Synergies with Tunka & Radio detectors
- → First physics

PHYSICS GOALS

Goals

Me: "Look that's what we want to build" My wife: "Ah! It's a milking machine!"

HiSCORE - Martin.Tluczykont@desy.de

Goals

Me: "Look that's what we want to build" My wife: "Ah! It's a milking machine!"

Goals

Me: "Look that's what we want to build" My wife: "Ah! It's a milking machine!"

HiSCORE - Martin.Tluczykont@desy.de

Going beyond 10 TeV gamma-rays

Ultra-High-Energy Gamma-ray observations window

Galactic Pevatrons

Astroparticle Physics with HiSCORE

Gamma-ray Astronomy

VHE spectra: where do they stop? Origin of cosmic rays: pevatrons Absorption in IRF & CMB Diffuse emission:

- Galactic plane
- Local supercluster

Charged cosmic ray physics

Composition anisotropies Sub-knee to pre-ankle

Particle physics beyond LHC

Axion / photon conversion Hidden photon / photon oscillations Lorentz invariance violation pp cross-section measurements Quark-gluon plasma

HiSCORE exposure

Tunka site exposure map

Field of view: π steradian

HiSCORE exposure

Tunka site exposure map

Field of view: π steradian

First H.E.S.S. Galactic plane scan

12/08/11

HiSCORE "pointing" = *tilting*

lesy.de

HiSCORE - Martin.Tluczykont@desy.de

HiSCORE "pointing" = *tilting*

HiSCORE "pointing" = *tilting*

NORMAL

SOUTH

NORTH

Zenith								
Name	long.	lat.	Exp.					
1ES 1218+304	-174°	82°	137 h					
1 ES 1215 + 303	$\sim 172^{\circ}$	82°	131 h					
W Comae	-159°	83°	83 h					
Markarian 501	63°	38°	57 h					
MGRO J2019+37	75°	0°	97 h					
MilagroDiffuse	76°	0°	103 h					
H 1426+428	77°	64°	210 h					
VER J2019+407	78°	2°	112 h					
MGRO J2031+41	79°	0°	121 h					
MAGIC J 2001+435	79°	7°	107 h					
TeV J2032+4130	80°	1°	126 h					
BL Lacertae	92°	-10°	209 h					
B3 2247+381	38_{\circ}	-18°	21.3 h					
1ES 1959+650	38_{\circ}	17°	1.36 h					
$G106.3 \pm 2.7$	106°	2°	275 h					
Boomerang	106*	2-	275 h					
Cassiopeia A	111-	-2-	312 h					
1ES 2344+514	112^{-}	-9"	312 h					
Tycho	120*	1-	342 h					
Markarian 180	131=	45^{-}	305 h					
LSI +61 303	135^{-}	1-	377 h					
3C66A	140°	-16°	307 h					
MAGIC J0223+403	140°	-16°	307 h					
M82	141°	40°	332 h					
1 ES 0502 + 675	143°	15°	367 h					
S50716 + 714	143°	28°	307 h					
IC 310	150°	-13°	308 h					
NGC 1275	150°	-13°	308 h					
RGB J0710+591	157°	25°	394 h					
1ES 1011+496	165°	52°	348 h					
1 ES 0806 + 524	166°	32°	373 h					
Markarian 421	179°	65°	255 h					

Tilted SOUTH										
Name	long.	lat.	Exp.							
3C66A	140°	-16°	244 h							
MAGIC J0223+403	140°	-16°	244 h							
1ES 0229+200	152°	-36°	221 h							
IC 310	150°	-1.3°	261 h							
NGC 1275	150°	-1.3°	261 h							
RBS 0413	165°	-31°	218 h							
VER J0521+211	-177^{-}	-8"	2.34 h							
Crab	-176^{-}	-5"	2.39 h							
IC443	-171^{-}	2-	240 h							
Geminga	-165^{-}	3-	206 h							
VER J0648+152	-162^{-}	6-	194 h							
1ES 0806 + 524	166°	32°	181 h							
1ES 1011+496	165°	52°	205 h							
Markarian 421	179°	65°	250 h							
1ES 1215+303	-172°	82°	239 h							
1ES 1218+304	-174°	82°	240 h							
W Comae	-159°	83°	235 h							
4C +21.35	-105°	81°	204 h							
M87	-77°	74°	127 h							
PKS 1424+240	29°	68°	179 h							
H 1426+428	77°	64°	185 h							
1ES 1440+122	8°	59°	101 h							
PG 1553+113	21°	43°	47 h							
Markarian 501	63°	38°	52 h							
W49B	43°	0°	7 h							
HESS J1912+101	44°	0°	11 h							
G54.1+0.3	54°	0°	44 h							
HESS J1943+213	57°	-1°	56 h							
MAGIC J2001+435	79-	7-	82 h							
MGRO J2019+37	75*	0"	103 h							
VER J2019+407	78*	2-	102 h							
MilagroDiffuse	76-	0=	106 h							
MGRO J2031+41	79-	0=	112 h							
TeV J2032+4130	80"	1-	110 h							
BL Lacertae	92°	-10°	181 h							
B3 2247+381	98°	-18°	206 h							
1ES 2344+514	112°	-9°	151 h							

Tilted NORTH									
Name	long.	lat.	Exp.						
Local Supercluster		≈xx h							
Tycho	120^{-}	1-	506 h						
L SI +61 303	135^{-}	1-	525 h						
1ES 0502 + 675	143°	15°	680 h						
RGB J0710+591	157°	25°	507 h						
S50716 + 714	143°	28°	791 h						
1 ES 0806 + 524	166°	32°	322 h						
M82	141°	40°	712 h						
1ES 1011 + 496	165°	52°	228 h						
Markarian 180	131°	45°	626 h						
1ES 1959+650	98°	17°	272 h						
G106.3+2.7	106°	2°	344 h						
Boomerang	106°	2°	344 h						
Cassiopeia A	111°	- 2°	382 h						
1ES 2344+514	112°	-9°	272 h						

Flexibility of scan region

22

Tilting

10

etector

Event rate estimation

University of Hamburg:

- Spectrum \rightarrow Generate random event list
- Fold with effective area, angular resolution energy response
- Estimate exposure time for individual sources
 - → Predicted reconstructed HiSCORE spectrum

Moscow State University:

- Estimate exposure time for individual sources
- Extrapolate known sources spectra

→ Estimated event rates

Event rates

Preliminary

Event rates

Name	RA degrees	Decl	GL	GB	Flux F at 1 TeV, 10 ⁻¹² cm ⁻² s ⁻¹ TeV ⁻¹	Г	Flux 35 1 10 ⁻¹⁷ s ⁻¹ T	F at feV, cm ⁻² eV ⁻¹	Comment	Ref.	dT hour (dT/2)	N>20TeV * event/ year int-1TeV	N>20** TeV Event/ year	N>35**** TeV event/ year
<u>4GRO</u> 2019+37	305.024	36.7191	75.0	0.2			8.7	1.4	Extended: 1.1 deg, PSR, flux at 20 Tev 10 ⁻¹⁵	1	48		576	
J2021.5+4026	305.40	40.44	78.23	2.07			35.8	8.5	PSR PWN	2	54			46
MGRO C2	307.747	36.5184	76.1	-1.7			3.4	0.8	PWN Flux at 20 TeV 10 ⁻¹⁵	1	52		245	
<u>TeV</u> J2032+4130	308.029	41.5083	80.254	1.074	0.45 0.03	2.0 0.3	63.3	8.3	UnID: Cyg OB2? /MGO J2031+41 PSR	2,15	60	130		90
MGRO J2031+41	308	41	80.3	1.1			9.8	2.9	Flux at 20 TeV 10 ⁻¹⁵	1	40		200	
MGRO C1	310.976	36.3057	77.5	-3.9			3.1	0.6	PWN Flux at 20 TeV 10 ⁻¹⁵	1	57		246	
SNR G106.6+2.9 I2229.0+6114	337.26	61.34	106.64	2.96	1.42 0.33 0.41	2.29 0.33 0.30	70.9	10.8	PSR MGRO C4 PWN Bumerang	2,5	140	290		240
Cas A	350.853	58.8154	111.736	-2.13	1.26 0.18	2.61 0.24 0.2			SNR, G111.7- 2.1	6	162	92		

Event rate estimation

HiSCORE - Martin.Tluczykont@desy.de

HARDWARE STATUS

Station mechanics

Slow control

Trigger & R/O

→ 1st component:

summing module

Trigger & R/O

• DRS4 evaluation board

• 2 DRS4 chip channels summed (noise red.)

Investigating alternatives & own R/O board R&D

 \rightarrow Synergies with CTA

• 4 channels with 1024 cells, up to 5 GHz sampling rate

HiSCORE - Martin.Tluczykont@desy.de

Schedule

HiSCORE 1st prototype at TUNKA 2012 PhD positions from Helmholtz Russia Joint Research Group

HiSCORE prototype at AUGER ~2012 PhD position from Helmholtz alliance, HAP

Engineering array at TUNKA: start deployment ~ end of 2012

HiSCORE: 10—100 km² in 2015 ?

Summary

- Many physics cases beyond 10 TeV primary energy The sensitivity goal is already reached by 10km² stage
- Detector fully simulated
- R&D advanced
 80% of components developed

Cooperation with TUNKA started

- → Prototype deployment prepared
- \rightarrow Engineering array ~2013
- Synergy effects with CTA

Further ideas:

Combination with radio / scintil. / imaging technique under stud

Backup slides

- Reconstruction
- More physics cases

RECONSTRUCTION

RECONSTRUCTION

GAMMA-HADRON SEPARATION

Lateral Cherenkov Photon Distribution

Lateral Cherenkov Photon Distribution

Lateral Cherenkov Photon Distribution

Shower core reconstruction

 10^{1}

0

50

100

150

200 250

Core distance [m]

300

350

400

- Nstations < 5: weighted center of gravity
- Nstations >= 5 : Fit to LDF

$$LDF(r) = \begin{cases} P \exp(dr) & \text{for } r < c_{LDF} \approx 120 \text{ m} \\ Q r^{k} & \text{for } r > c_{LDF} \end{cases}$$

$$r = r(x, y) = \sqrt{x^{2} + y^{2}}$$

$$Q = \frac{P \exp(dc_{LDF})}{(c_{LDF})^{k}}$$
Free parameters P, d, k, (x,y).
Nstations >= 6: c_{LDF} free parameter

• To come: use width for outside showers 12/08/11 HiSCORE - Martin.Tluczykc

Shower core resolution

Direction reconstruction

 >3 stations: model fit adapted from Stamatescu et al. 2008, Parametrization of time-delay dt at detector position

$$dt(k,z) = \frac{1}{c} \left(\sqrt{k} - \frac{z}{\cos(\theta)} + \frac{8.0}{z} \sqrt{k} \eta_0 \left(1 - \exp\left(\frac{-z}{8.0}\right) \right) \right)$$
$$k(r,z) = r^2 + z^2 \frac{1}{\cos(\theta)^2} + 2rz \tan(\theta) \cos(\delta)$$

 $\delta = \phi + \operatorname{atan2}\left((x_{Det} - x_{core}), (y_{Det} - y_{core})\right)$ HiSCORE - Martin.Tluczykont@desy.de

Direction reconstruction

 >3 stations: model fit adapted from Stamatescu et al. 2008, Parametrization of time-delay *dt* at detector position

Direction reconstruction

 >3 stations: model fit adapted from Stamatescu et al. 2008, Parametrization of time-delay *dt* at detector position

Angular resolution

Energy reconstruction

• Smallest impact of shower depth on photon density at 220m

martin.tluczykont@physik.uni-hamburg.de - HISCORE - Moscow Workshop 2011

Shower depth reconstruction

• **Ds:** Depth from LDF slope, Q50/Q220

- **Dw:** Depth from signal width
- signal-stacking: add signals with same core-distance

Shower depth reconstruction

- **Ds:** Depth from LDF slope: Q50/Q220
- **Dw:** Depth from signal width
- signal-stacking: add signals with same core-distance

)0

Shower depth resolution

12/(

Gamma-hadron separation (1)

Gamma-hadron separation (2)

HiSCORE - Martin.Tluczykont@desy.de

Gamma-hadron separation (combi)

HiSCORE - Martin.Tluczykont@desy.de

Effective area @ reconstruction level

PHYSICS

PHYSICS CASES

Gamma-Ray Sky, E>100GeV

VHE gamma-ray sky 2009

Gamma-Ray Sky, E > 10 TeV

Gamma-Ray Sky, E > 100 TeV

Gamma-Ray Sky, E>100TeV

Gamma-Ray Sky, E>100TeV

Gamma-Ray Sky, E>100TeV

Cosmic ray physics

Cosmic rays

Particle physics

Further particle physics topics:

- Axion search: photon/axion conversion & reconversion \rightarrow absorption-free propagation
- Hidden sector
- Heavy dark matter

Galactic supercluster

UHECRs

- confined in **local supercluster**
- CR CMB interaction
 → intergalactic pair cascades
- Expect diffuse gamma-ray emission
- Kneiske, Lodz 2009

Point-sources from AGN ?

IC Pair-cascading

Haloes ?

12/08/11

HARDWARE

HARDWARE STATUS

Hardware status

component	status	comment
PMTs	25 Available / tested	Await further delivery 75
DRS4 R/O	25 Available / tested	
HV sup/div	5 Available / tested	
PlugPC	25 Available / tested	
Microcontroller	25 Available / tested	
SlowCtrl board	Prototype available, tested	Developing final version
Sensors	Available / tested	
Trigger	Protype Summer Developing full board	Fall-back: internal DRS4 trigger
GUI-client / server connection	Available / partly tested	Further development Full test with all station components @ UHH

Hardware status

HiSCORE prototype @ Tunka

- 2 prototypes in 2012
- Cross-calibration with TUNKA Cherenkov
- Potential of joint operation with muon detectors
- Synergies with radio detectors
- First use TUNKA trigger / DAQ
- During 2012: develop HiSCORE local trigger
- 2012+: start deployment of engineering array for proof of principle and first physics

HiSCORE prototype @ Tunka

Current activities

- Local trigger development (UniHH)
- Improvement of Tunka time-synchronization (MSU)
- Alternative time-synchronization (UniHH, KIT)
- Finalizing slow control (UniHH)
- DAQ software (UniHH)
- Phenomenology (UniHH, MSU, Grisha?)
- Simulation & reconstruction software (UniHH)
- Prototype station tests (UniHH)
- Preparatory work for prototype deployment (MSU)

SIMULATION

SIMULATION

Shower simulation

Air-shower simulation CORSIKA 6735 [1]:

using the hadronic interaction model Gheisha [2] including the iact Cherenkov photon package [3]

- Gamma, H, He, N, Fe
- 1/E powerlaw from 10 TeV (H: 5 TeV) to 5 PeV
- New production using Fluka planned

Detector simulation

Full detector simulation – sim_score [5]:

- Using iact package I/O routines, provided by [3]
- Winston cone acceptance included by ray-tracing simulation
- PMT quantum efficiency (Electron Tubes 8" PMT, data sheet)
- Electron collection efficiency
- PMT signal pulse-shape parameterization [4]
- Afterpulsing simulated w/ $P = 10^{-4}$ at 4 p.e.
- Local trigger: sum of 4 clipped channels
- Night-sky background (including pulse shaping), added to signals
- Array trigger: 1-station or 2-station NN (1µs coincidence window)

Winston cone acceptance

PMT simulation

- Wavelength-dependent QE simulated
- Photomultiplier response including afterpulses

An event example

An event example

Effective CR trigger area

Effective CR trigger area

Separate NSB simulation, 4-channel station:

- NSB-rate from measurement in Australia [Hampf et al. 2010]
- Arrays of Photon times: equally distributed random numbers
- Pulse shaping + afterpulsing
- 4-channel coincidence trg:
 - \rightarrow channel-amplitude-clipping
 - \rightarrow analog sum of 4 clipped signals
 - \rightarrow discriminate sum
- Resulting **noise file:** 2s in 1ns bins
- Noise added segment-wise from file to simulated air-shower signal

Signal and noise

HiSCORE - Martin.Tluczykont@desy.de

Expected night-sky background trigger rate

Hadron parametrization

Hoerandel 2003: polygonato model

Station hadron trigger rate

- Simulated average number of stations ber bin
- Folding with polygonato model
- ~13Hz single station hadron trigger rate

Array hadron trigger rates

Trigger rates for E > 10 TeV, before reconstruction cuts Detector layout: simple grid, 10 km² (SCORE) Trigger condition: single station trigger

Proton	774 Hz
Не	436 Hz
Ν	257 Hz
Fe	90 Hz
Array rate, all particles	~ 2 kHz
Single station rate	~ 13 Hz
NSB per station	< 300 Hz

Trigger rates summary

Alternatives / Extensions

- Improvements of layout:
 - 4-channel-cells, 7m X 7m: Operate each channel independently 2-by-2 sub-arrays for better low-energy reconstruction
 - Graded array: decreasing station density towards array edge maximizes area for large energies
 - Daytime-measurements with scintillator material in lid: 100% duty cycle
 - Muon detector: much better g/h separation
- Combination with imaging technique:
 - provide core-reconstruction for low-density telescope grid (even monoscopic ?)
 - Instrumentation of larger area for highest energies
- Combination / cross-calibration with radio detection technique ? 85

Combination with IACTs

86

Combination with IACTs

- Sharing site infrastructure
- Use SCORE stations for **shower impact reconstruction**
 - improvement for large stereo angles
 - monoscopic telescopes distributed on larger area.
 E.g. CTA: same number of small telescopes but larger distances giving higher Aeff / channel ratio !
- Caveat: observations constrained to station viewcone might be overcome by using timing stereo at large zenith angles.
- Working on ... testing this in simulation

References

[1] D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz, and T. Thouw, Report **FZKA 6019** (1998), Forschungszentrum Karls\-ruhe; available from http://www-ik.fzk.de/~heck/publications

[2] H. Fesefeldt, Report PITHA-85/02 (1985), RWTH Aachen

[3] K. Bernlöhr (2008), astrop-ph preprint, arXiv:0808.2253

[4] V. Henke (1994), Diploma thesis, University of Hamburg

[5] M. Tluczykont, T. Kneiske, D. Hampf & D. Horns (2009), Proc. of the ICRC 2009, arXiv eprint (arXiv:0909.0445v1)

[6] D. Hampf, M. Tluczykont & D. Horns (2009), Proc. of the ICRC 2009, arXiv e-print (arXiv:0909.0663v1)

[7] J.R. Hörandel, Astropart. Phys., 19, 193 (2003)

[Shibata et al. 2010] M. Shibata, Y. Katayose, J. Huang and D. Chen, ApJ 716, 1076 (2010)

[Blümer et al. 2009] Blümer, Engel & Hörandel Progr. in Part. and Nucl. Phys., 63/2, p 293 2009

H.E.S.S. survey sensitivity

Expected pevatron signal

- Assuming MGRO 2019+37 is a pevatron (1deg extension, 3.49 10⁻¹² TeV cm⁻² s⁻¹@ 12 TeV)
- $dN/dE = 4.26 \ 10^{-12} (E/TeV)^{-2} \ e^{-sqrt(x/300TeV)} [TeV^{-1}cm^{-2}s^{-1}]$
- Fold dN/dE and Hörandel w/ post-reconstruction area
- Integral event numbers
 - 2deg source region
 - 5 years observation time

Energy	gammas	hadrons	Signific.
>50 TeV	7000	1050000	6.8
>100 TeV	4000	450000	5.9
>1PeV	100	20000	0.7
12/08/11			HiSCORE -

p-p cross-section

- Correlation shower depth / first interaction \rightarrow measure interaction length in air $\sigma(p-p)$
- SCORE: 1.7 < E_{CM} < 170 TeV

Particle physicsorigin of knee ?

Overlap: LHC CR experiments

12/08/11

Propagation: Galactic Absorption & CMB

- e⁺e⁻ pair production: Interstellar radiation field (ISRF) and CMB
- estimate ISRF density
- CMB well known: distance estimate?
- Weakening of absorption by:
- Photon / axion conversion in Galactic Magnetic field
- Photon / hidden photon oscillation
- Lorentz invariance violation (modification of e⁺e⁻threshold)

