

#### Helmholtz Russian Joint Research Group

Measurements of Gamma Rays and Charged Cosmic Rays in the Tunka-Valley in Siberia by Innovative New Technologies

# **Radio Detection of Cosmic Ray Air Showers**

### Frank G. Schröder

Karlsruhe Institute of Technology (KIT), Institut für Kernphysik, Karlsruhe, Germany







# **Comparison of methods**



| Current Status     | Particles at<br>Ground | Fluorescense /<br>Cherenkov | Radio               |
|--------------------|------------------------|-----------------------------|---------------------|
| Angular resolution | +                      | o / +                       | +                   |
| Energy             | 0                      | +                           | + ?                 |
| Primary mass       | - / o                  | +                           | + ?                 |
| Exposure           | +                      | 0                           | -                   |
| Duty cycle         | ~ 100 %                | ~ 10 %                      | ~ 95 %              |
| Energy threshold   | 10 <sup>13</sup> eV    | 10 <sup>17</sup> eV         | 10 <sup>17</sup> eV |

Already shown: principle feasibility with radio (e.g. LOPES)
Still to show: precision + large scale application

# **Radio emission processes**

Geomagnetic deflection of e<sup>-</sup> and e<sup>+</sup>

- dominant effect
- theoretical prediction: Kahn + Lerche 1966
- many experimental proofs
- Variation of net charge excess
  - ~ 10% effect depending on geometry
  - theoretical prediction: Askaryan 1962
  - experimental proof by CODALEMA 2011
- Emission up to ~100 MHz, due to coherence condition:
  - $\lambda$  > thickness of shower pancake (~ m)





T. Huege, M. Ludwig

# **Experiments world wide**



Historic, analog experiments (since 1960`s)

- e.g., UK, US, Russia (e.g. at MSU, Yakutsk), …
- Revival in 2003 with digital radio arrays
  - LOPES
  - CODALEMA
- New generation of digital radio experiments
  - Auger Engineering Radio Array (AERA)
  - Tunka radio extension
  - ANITA, RASTA at Antarctica
  - LOFAR (Netherlands), TREND (Tianshan, China)
  - Continuation, new analyses of experiments at MSU, Yakutsk, …



# LOPES at KIT

- Location and trigger: KASCADE-Grande
- 30 dipole antennas
- 40 80 MHz
- Absolute amplitude calibration
- Relative timing ~ 1ns
- Radio interferometer
  - digital combination of antennas to one beam



#### Visualization of radio pulse Energy ~ amplitude 1 Cost 60° Height 4 amplitude of interferometric cross-correlation beam 62° $\sim$ 64° Pulse AZEL Latitude 66° og(Radio $\overline{}$ 68° 00 70° $\bigcirc$ 72° 8 8.5 20° 00 5° 10° 15° 25° 340° 350° AZEL Longitude log(Primary Energy/GeV) A. Horneffer

# **Direction and energy reconstruction**

Falcke et al. (LOPES coll.) 2005, Nature

frank.schroeder@kit.edu Institut für Kernphysik, KIT Campus North



DPE

# **Reconstructing cosmic rays with radio**

- Arrival direction
  - very good, better than 1°
- Energy
  - precision is at least sufficient < 25%</p>
  - theoretical expected: even better precision
- Type and mass of primary particle
  - via distance between detector and shower maximum:
    - protons interact deeper in the atmosphere than heavy particles
  - two possible ways (LOPES + REAS3 simulations):

## slope of lateral distribution

# angle of conical wavefront



# Lateral distribution example event

- REAS3 radio simulations for each LOPES event
- Proton lateral distribution steeper than iron



Thanks to M. Ludwig and T. Huege for the REAS3 simulations



DPE

Cos

# Status mass sensitivity

Theoretical X<sub>max</sub> resolution of 30 g/cm<sup>2</sup> possible
typical difference between proton and iron ~ 100 g/cm<sup>2</sup>

However, LOPES performance is limited

- high noise level at KIT makes precision much worse
- absolute scale from simulations, mismatch with data

Cross-calibration with independent method required

- fluorescense light measurements of X<sub>max</sub> at Auger
- Cherenkov light measurements of X<sub>max</sub> at Tunka



# Comparison AERA vs. Tunka radio ext.



|                              | AERA                                     | Tunka radio ext.                         |
|------------------------------|------------------------------------------|------------------------------------------|
| number of antennas           | 150                                      | 20                                       |
| area                         | 10 km²                                   | 1 km²                                    |
| radio cross-calibration with | fluorescence                             | Cherenkov                                |
| estimated energy range       | 10 <sup>17.5</sup> – 10 <sup>19</sup> eV | 10 <sup>16.5</sup> – 10 <sup>18</sup> eV |
| type of antenna station      | autonomous                               | attached to Tunka                        |
| approx. cost per antenna     | 5 k€                                     | 0.5 k€                                   |

 Competition of most sophisticated vs. simple technology
Complementary approach for same physics goal: What is the mass resolution of radio measurements?









- 150 antennas on 10 km<sup>2</sup>
- 24 stations in operation
- 30-80 MHz
- Self-triggered, autonomous stations
- First cosmic ray events in spring 2011

(earlier events with prototype radio stations at Auger)



# Tunka radio extension (antennas 2 + 3)





# Tunka radio event (with first antenna)





# **Tunka radio extension**



Current status

3 antennas in the field, operation of antenna 2+3 starts soon

2012 start of larger radio array within HRJRG

"Measurements of Gamma Rays and Charged Cosmic Rays in the Tunka-Valley in Siberia by Innovative New Technologies"

- hybrid measurements with Cherenkov light detectors
- determine energy and mass precision of radio measurements
- $\rightarrow$  Seeking PhD students (at least one from Russia)
- Mid-term outlook
  - enhance duty cycle of Tunka by a factor of 10, when combining radio array with scintillator extension

# Conclusion



Digital radio antenna arrays =

alternative instrument for air shower detection

LOPES at KIT is still one of the leading experiments

- proof-of-principle for digital radio interferometry (for cosmic rays)
- reconstruction of air shower direction, primary energy and primary mass (via distance to shower maximum)
- precision limited due to high background at KIT
- Next generation radio experiments: AERA + Tunka
  - Iower background
  - cross-calibration with established techniques
  - Iast development step to use radio for cosmic ray physics



### 850

**Conical wavefront** 



Protons have steeper wavefront cone than irons

[g/cm<sup>2</sup>] simulation 900 X max 800 750 true 700 650 REAS3 p 600 REAS3 Fe 550 0.012 0.014 0.018 0.02 0.022 0.024 0.026 0.016 angle between wavefront cone and plane wave [rad]



