Workshop on Russian-German Perspectives, JINR Dubna Dec. 8-9, 2011

UHE Cosmic Rays: Recent Results from Auger and Future Plans

Karl-Heinz Kampert (Univ. Wuppertal) on behalf of the Pierre Auger Collaboration

Origin of the highest energy CRs

Origin of the highest energy CRs

• Where do UHECRs come from?

- -> What is their composition in the cut-off region?
- Do we see the GZK or the limiting energy of sources ?
- → Do we see large scale anisotropies or point sources ?
- → How to understand the transition from galactic to EG CRs?
- Learn about (particle) physics at the highest energies

Pierre Auger Observatory in Argentina

Water Cherenkov Station

...1660 stations in total

Fluorescence Telescope

24+3 telescopes (6(9) per site) 12 m² mirrors, Schmidt optics 30°x30° deg field of view 440 PMTs/camera (12000 PMTs) 10 MHz FADC readout

Camera with 440 PMTs

opt. Filte

Karl-Heinz Kampert

JINR Dubna, Dec. 8.-9. 2011

Pierre Auger Collaboration

~490 collaboration members in 19 countries:

Argentina	Netherlands
Australia	Poland
Brasil	Portugal
Croatia	Slovenia
Czech Republic	Spain
France	UK
Germany	USA
Italy	
Mexico	

Bolivia*

Romania*

Vietnam*

*Associated

OBSERVATORY

Pierre Auger Collaboration

~490 collaboration members in 19 countries:

Argentina Australia Brasil

Croatia

Czech Republic

France Germany Italy Aachen Karlsruhe (3) Hamburg Siegen Wuppertal Netherlands Poland

Portugal

Slovenia

Spain UK

USA

Bolivia*

Romania*

Vietnam*

*Associated

PIERRE AUGER OBSERVATORY

Russía contríbuted íntellectually ín the early days but could not sígn ínternatíonal agreement

Energy Spectrum D-AIT, DD X-SEETODS

SD Energy Calibration by FD

Total uncertainty of E-scale: 22% (dominated by FI-yield. 14%)

Surface Detector Spectrum (calibrated by FD)

SD+Hybrid Combined Spectrum

Exposure = 20905 km² sr yr (60% increase over PLB 685 (2010) 239) Inclined showers add another 5300 km² sr yr

SD+Hybrid Combined Spectrum

Inclined showers add another 5300 km² sr yr

Towards Lower Energies with Infill-Array

750 m infill: fully efficient at 3-10¹⁷ eV and θ<55°

Karl-Heinz Kampert

Preliminary Infill Energy Spectrum

Exposure of infill array: (26.4±1.3) km² sr yr

p-Air & pp Cross-Section at $\sqrt{57}$ TeV

p-Air Cross-Section

systematic uncertainties assume <0.5% photons and <25% He

p-p Cross-Section at $\sqrt{57}$ TeV

Inclined Showers: Models Unterestimate µ-Number

- Inclined showers (62°-80°) dominated by HE muons
- show broken circular symmetry; accounted for by μ -map
- small EM contribution subtracted from signals $\rightarrow N_{\mu}$

Mass Composition Photons, Neutrinos

Composition from FD & SD

Muon Production Depth from timing differences

Shower Depth from asymmetry of rise times

First results from SD → confirm FD

X_{max} observation by FD

 $\rightarrow \langle \mathbf{X}_{\max} \rangle$

and RMS(X_{max})

update of data published in PRL

Compositon & Spectrum

Xmax Distributions vs Models

Xmax Distributions vs Models

Photon Limits disfavor Top-Down UHECR-Origin

Karl-Heinz Kampert

Update of Neutrino Limits

Search for

- up-going Earth-skimming showers
- down-going Neutrino showers

Search criteria

- young v induced showers \rightarrow wide time distribution in tanks
- elongated footprint of inclined shower
- propagation speed of shower front at ground

sensitive to all flavors

no candidates found

Diffuse Neutrino Limits

Anisotropies Astrophysics

Update of Correlation with VCV-AGN

JINR Dubna, Dec. 8.-9. 2011

Update of Correlation with VCV-AGN

Update on Cen A

KS test: 4% isotropic probability Largest departure at 24°: 19 observed / 7.6 expected **Binomial P = 3 \cdot 10^{-4}; Li -Ma: 3.3** σ

Serendipity Observations & Triple-Hybrids

Solar & Environomental Physics with Auger

Observation of Elves

[deg]

JINR Dubna, Dec. 8.-9. 2011

Elves

100 kilometres

Summary

Rich Harvest of Data for upcoming years Broad and enlarged Science Program Stable operation + Enhancements + Exp. Breakthroughs

- Calorimetric Energy Calibr. by FD is of crucial importance
- Models underestimate Muon-Numbers by ~25 100%
- First p-Air and pp Cross-Section much beyond LHC energies
- FD and SD provide consistent composition information
- Anisotropies stabilizing
- Photons and Neutrinos nearing GZK-regime -> verify GZK

Future Plans

Enhance capabilities by infill array, improved muon counting

Enhance capabilities by infill array, improved muon counting

Develop and test new EAS detection technologies: MHz-GHz Radio

Enhance capabilities by infill array, improved muon counting

Develop and test new EAS detection technologies: MHz-GHz Radio

Prepare - in a worldwide effort - for a much larger Observatory

Radio Observations @ Auger

Radio EAS observations (MHz & GHz)

- → world wide unique site & infrastructure allows multi-hybrid observation
 - → currently 100 km² of MHz (AERA) and GHz (Easier) antennas being installed
 - + other GHz techniques (AMBER, MIDAS, CROME, FDWave)

These initiatives will give definite answers about the potential of EAS Radio-Observations and will improve present physics capabilities

JINR Dubna, Dec. 8.-9. 2011

Karl-Heinz Kampert

Birth of Super-Hybrid: SD+FD+Radio

International Symposiun on Future Directions in UHECR Physics

UHECR 2012

CERN, Geneva Febr. 13-16, 2012

web site & contact: http://2012.uhecr.org conf@uhecr.org

Scope:

Discuss the highlights and challenges
 of UHECR observations

 Prepare for a next generation ground based giant detector

> Evaluate the complementarity of ground and space based observations

> > Identify technological challenges and related R&D works

International Advisory Committee V. Berezinsky, J. Blümer, H.S. Chen, T. Ebisuzaki, R. Engel, M. Fukushima (chair), F. Halzen, Y. Itow, K.-H. Kampert, A. Letessier-Selvon, P. Lipari, K. Makishima, M. Panasyuk, I. Park, P. Picozza, P. Privitera, K. Sato, P. Sokolsky, T. Suomijarvi, F. Takahara

Local Organization Committee M. Bertaina, J. Blümer, R. Engel, K.-H. Kampert (chair), A. Letessier-Selvon, F. Najeh, B. Pattison, J. Rautenberg, I. Tkachev Supported by CERN February 13-16, 2012 http://2012.uhecr.org conf@uhecr.org

Major Scope of Workhop:

- UHECR physics questions for the future
- New detection techniques and detector designs
- Start world-wide coherent effort

if you want to participate, please register quickly ! (running short of accomodation)

Vou até Wéiller Vou articipate Inviteur Monte Meredan Search for sites of ~ 30 000 km²

N50

E150

E110

E 90°

Fluorescence? Radío? Water-Cherenkov? Scintillators? electronics distributed DAQ communications

E 70°