Physics of the highest energy cosmic rays

Grigory I. Rubtsov

Institute for Nuclear Research of the RAS

Workshop on Russian-German Perspectives Dubna, December 8, 2011

• UHECR experiments ($E \gtrsim 10^{18} eV$)

- GZK cut-off
- primary composition
- photons and new physics

UHECR experiments today ($E \gtrsim 10^{18} eV$)

UHECR experiments today ($E \gtrsim 10^{18} eV$)

Yakutsk array

Pierre Auger

Telescope Array

Yakutsk EAS Array

- Designed as pioneering hybrid array, now contains three types of detectors: scintillation, muons, Cherenkov.
- Unique facility to probe composition and hadronic interaction.
- The upgrade is ongoing: time resolved signals at SDs; new type of differential Cherenkov detectors.

Differential Cherenkov detector

Pierre Auger Observatory in Argentina

K. Kampert, ICHEP'10, Paris

Auger fluorescence and surface detector

A Telescope and a Water Cherenkov Station

27 fluorescence telescopes...

Telescope Array observatory

- ► 507 SD's, S = 3m²
- ▶ 3 FD's
- ► CLF

TA surface detector

Telescope Array Middle Drum fluorescence detector

photo by Benjamin Stokes

UHECR c.m. energy/detection rate

UHECR are good to probe high energy interaction

UHECR are exceptional to probe Lorentz invariance

GZK effect

Greisen, 1966; Zatsepin, Kuzmin, 1966 Cut-off predicted for $E \gtrsim 10^{19.7}$ eV.

$$p + \gamma_{2.7K} \rightarrow n + \pi^+ \ \rightarrow p + \pi^0$$

AGASA spectrum, 2003

Takeda, M. et al., Astropart. Phys 19(2003)

- Expected 1.9 event
- Observed 11 events above 10²⁰ eV

Cut-off observation by HiRES

Monocular: Quarks'06; PRL 100 (2008) Stereo: Astropart. Phys. 32 (2010)

Pierre Auger spectrum

PRL 101 (2008) & Phys. Lett. B 685 (2010)

Telescope Array surface detector spectrum

GZK confirmed by plastic scintillator SD (AGASA-like)Cut-off significance 3.9σ B.Stokes, ICRC'11, Beijing

Composition: Auger/HiRES XMAX results

Auger

Phys.Rev.Lett.104.091101, 2010

HiRES

Phys.Rev.Lett.104.161101, 2010

Yakutsk array results on chemical composition

 $0.29 \le \epsilon_{\rm Fe} \le 0.68 ~(95\%{
m CL}), ~~E > 10^{19}~{
m eV}$

A. Glushkov et al., JETP Letters 87:190-194,2008

L. Dedenko et al., Izv. RAN. Fiz. 75:325, 2011

Telescope Array stereo result

Y. Tameda, ICRC'11, Beijing

Ultra-high energy photons

 10¹⁸ – 10¹⁹ eV photons are everpresent secondaries of GZK process

$$p + \gamma_{2.7K} \rightarrow \Delta(1232) \rightarrow n + \pi^+ \rightarrow p + \pi^0$$

 $\pi^0 \to \gamma \gamma$

Note: GZK-photons are produced effectively only in case of proton primaries while UHECR composition is generally unknown (there is disagreement between experiments)

Ultra-high energy photon limits

A – Agasa, Y – Yakutsk, PA – Pierre Auger, TA – Telescope Array lines - min and max GZK photon flux for acceptable source models *Gelmini, Kalashev, Semikoz, Astropart.Phys.28, 2007*

Lorentz-invariance violation in QED

 Novel approaches to quantum gravity predict Lorentz-invariance violation (LIV) at high energies (e.g. Horava-Lifshitz).

Let's consider Lorentz-violated QED with dispersion relations:

$$\begin{split} \gamma : & k_0^2 = k^2 + \alpha \frac{k^4}{M_{Pl}^2} \\ e^{\pm} : & p_0^2 = (1+\xi)p^2 + m^2 + \beta \frac{p^4}{M_{Pl}^2} \end{split}$$

- ▶ QG models require large violation: $|\alpha|, |\beta| \gg 1$
- ξ is constrained by LEP synchrotron energy losses
- Violation in hadronic sector is not included in the model

Photons in LIV model

> Photons undergo e^+e^- pair production on intergalactic

backgrounds (CMB, IR, radio).

- In LIV case, the threshold of the reaction may be upshifted and Universe becomes transparent for UHE photons.
- Flux on Earth exceeds already existing limits.

$$\alpha - \beta/4 > -10^{-6}$$

Galaverni, Sigl, Phys.Rev.D. 78, 2008

On the other side: $\gamma \rightarrow 3\gamma$

- no threshold
- rapidly grows with energy
- photons escape detection

Lorentz-invariant GZK-photon fluxes

LIV Example 1: pair production OFF

LIV Example 2: pair production **OFF**, γ splitting **ON**

Observational signatures of LIV

no UHE pair production – excluded **"no" interaction in atmosphere** – still photonuclear interactions, showers will be very deep (like neutrino) $\gamma_{UHE} \rightarrow e^+e^-$ – no GZK photons $\gamma \rightarrow 3\gamma$ – no GZK photons and excess of PeV–EeV photons (target for HiSCORE)

O. Kalashev, GR, P. Satunin, S. Sibiryakov, to appear

Conclusion

- GZK cut-off is observed
- For immediate discovery:
 - highest energy composition
 - sources of UHECR
 - GZK secondary photons
- HiSCORE experiment will open new gamma window 10¹⁵ – 10¹⁸ eV and test Lorentz invariance
- We probe the most energetic particle processes in the Universe

Backup slides

QED reactions, $\alpha = 0$, $\beta = 0$

QED reactions, $\alpha = 0, \beta < -1$

QED reactions, $\alpha > 1$, $\beta = 0$

QED reactions, $\alpha < -1$, $\beta = 0$

QED reactions, $\alpha = 0, \beta > 1$

