Atomic Layer Deposition of Tantalum Oxide A New Material For Coating Cavities Master Colloquium – Marco Voige 06.03.2025 # **Surface Losses Limit SRF Cavity Performance** Oxide layers influence material properties (high SEY (Secondary Electron Yield)), which can trigger multipacting Multipacting: Resonant electron avalanche leading to increased RF losses $$Q_0 = \frac{\omega_0 \cdot U}{P_c} = \frac{G}{R_s} \qquad R_S = \underbrace{\frac{A \cdot f^2}{T} \cdot exp\left(\frac{\Delta(T)}{k_B \cdot T}\right)}_{\text{-8 n$\Omega @ 2K, 1.3 GHz, Nb}} + R_0$$ # Nb₂O₅ Impacts SEY and Dielectric Losses **Fundamentals** Amorphous Nb₂O₅ is energetically more favorable Non-stoichiometric phases lead to dangling bonds Two-Level Systems # Nb₂O₅ Impacts SEY and Dielectric Losses **Fundamentals** # Ta₂O₅ as a Potential Coating Material for SRF Cavities Hypothesis & Motivation | ex-situ | Baseline /Å | After Coating /Å | After Baking /Å | |--------------------------------|-------------|------------------|-----------------| | Nb ₂ O ₅ | 20 | 18 | - | | Al_2O_3 | - | 172 | 170 | SRF 2023 - Zaidman - WEPWB072 Baking removes the Nb₂O₅-layer! Ta₂O₅ exhibit lower TLS density than Nb oxides, which has been shown to improve qubit lifetimes # ALD Enables Precise Ta₂O₅ Thin Film Growth Methodology – ALD L. Mai, (2020), DOI:10.13154/294-7658. Schematic layout of the ALD system \rightarrow thermal ALD requires two chemicals, one precursor: Ta(OEt)₅, one co-reactant: H₂O The deposited ALD enables precise and uniform coatings through self-limiting reactions Methodology – Process Adjustments Methodology – Process Adjustments ### Final recipe for planar samples (GPC ~ 0.07 nm/Cycle) | Phase | Time /s | | |--------------------------------------|------------|-----| | | Purge | 5 | | Internal Boost | Prec. Puls | 30 | | internal boost | Pulse | 2 | | | Purge | 10 | | | Pulse | 0.5 | | Precursor
(Ta(OEt) ₅) | Exposure | 10 | | (- (- 75) | Purge | 60 | | | Pulse | 0.5 | | Co-Reactant
(H ₂ O) | Exposure | 10 | | - (2) | Purge | 60 | | Position | Temperature /°C | | |-------------|-----------------|--| | Precursor | 190 | | | Co-Reactant | 20 | | | Chamber | 200 | | | Lid | 200 | | | Exhaust | 120 | | N₂ Flow /SCCM 20 Main system modifications during optimization **Software Correction** **Fully Heated System** **Internal Boost** Problem: Low material flow of the precursor due to the low vapor pressure Problem: Material decomposition if precursor temperature is too high Solution: Increasing the pressure in the precursor container Methodology – Process Adjustments ### Final recipe for planar samples | Phase | Time /s | | |--------------------------------------|------------|-----| | | Purge | 5 | | Internal Deset | Prec. Puls | 30 | | Internal Boost | Pulse | 2 | | | Purge | 10 | | _ | Pulse | 0.5 | | Precursor
(Ta(OEt) ₅) | Exposure | 10 | | (14(021)5) | Purge | 60 | | | Pulse | 0.5 | | Co-Reactant
(H₂O) | Exposure | 10 | | (1.120) | Purge | 60 | ### Examplary ALD Process with internal boost Methodology – Process Adjustments ### Examplary ALD Process with internal boost # Cavity Coating Challanges – Full Coverage & Uniformity Discussion – Challenges in Application Goal: Adapt ALD recipe to cavity geometries Sample holder enables measurements of the thickness gradient in the cavity Dummy cavity sample holder for planar Si samples Problem: Recipes show high thickness gradients across the cavity volume Possible Solution: Flow-Through Systems (chemicals must pass through the entire cavity) # **Cavity Coating Challanges Impact Uniformity** Discussion – Challenges in Application Recipe parameter set changed between the runs Full coverage of the cavity accomplished Uniform cavity coating not achieved But: flow-through system enables thicker coatings in the top tube of the cavity # XRD Confirms Crystallization of Ta₂O₅ Results XRD Analysis was conducted to investigate the structural properties of Ta₂O₅ Increased crystallinity in ${\rm Ta_2O_5}$ films can reduce the presence of TLS As-deposited Ta₂O₅ films are amorphous Analysis of annealed sample indicates the formation of a crystalline phase Hexagonal cell #### Orthorhombic cell ### SEY Measurements Shows Lower Electron Emission in Ta₂O₅ ### Results #### Air exposed niobium has an SEY of 2.2 R. Noer, S. Mitsunobu, Y. Kijima, and K. Saito. Secondary electron yield of nb rf cavity surfaces. 10th Workshop on RF Superconductivity, 2001. A high SEY increases the likelihood of secondary electron avalanches, which can lead to multipacting As-deposited ${\rm Ta_2O_5}$ shows a significant decrease in SEY compared to as-deposited ${\rm Al_2O_5}$ Post-deposition thermal annealing at 800°C for 3h decreased the SEY to ~2.4 # Ta₂O₅ Shows Potential but Needs Optimization ### Conclusion ### ALD → planar samples Optimization resulted a uniform and reproducible coating ### ALD → cavity structures - · Full coating coverage achieved - Thickness gradient across the cavity observed (~70 to ~7nm) - Cause of gradient still under investigation ### Material study - XRD showed that crystalline Ta₂O₅ forms with annealing at 800°C for 3h - Crystalline structure may reduce the TLS density - Phase transformation changes dielectric properties - Al₂O₃ requires higher crystalizing temperatures >1000°C - Ta₂O₅ shows lower SEY value as Al₂O₃ - Ta₂O₅ as-deposited shows reduction of ~14%, annealed of ~31% compared to Al₂O₃ - Decreased SEY could reduce impact of multipacting in cavities # Further Research Can Improve Coating Quality ### Outlook ### Precursor Output Stability → Unable to monitor precursor release dynamically. Installing a bubbler device could stabilize vapor pressure and improve reproducibility. ### Potential Cavity Seal Leakage → Seal operating near 200°C may cause leakage, affecting precursor distribution and coating uniformity ### Cavity Recipe Requires Further Optimization → Complex geometry demands further optimized process times and temperatures to ensure homogeneous deposition The results demonstrate that Ta_2O_5 coatings offer promising properties for SRF cavities, with ALD proving to be a viable deposition method that can be further optimize to enhance its potential. # **Acknowledgments** ### Thanks to - My examiners, Prof. Wolfgang Hillert and Dr. Marc Wenskat, and my supervisors, Dr. Robert Zierold and Dr. Getnet Deyu. - **My friends and colleagues**, Lea, Chirag, Rezvan, Chris, Jonas, Isabel, Leon, Julia, Giovanni, R.d.ü.T., and many others, for their support and encouragement.