

Atomic Layer Deposition of Tantalum Oxide A New Material For Coating Cavities

Master Colloquium – Marco Voige

06.03.2025

Surface Losses Limit SRF Cavity Performance

Oxide layers influence material properties (high SEY (Secondary Electron Yield)), which can trigger multipacting

Multipacting: Resonant electron avalanche leading to increased RF losses

$$Q_0 = \frac{\omega_0 \cdot U}{P_c} = \frac{G}{R_s} \qquad R_S = \underbrace{\frac{A \cdot f^2}{T} \cdot exp\left(\frac{\Delta(T)}{k_B \cdot T}\right)}_{\text{-8 n$\Omega @ 2K, 1.3 GHz, Nb}} + R_0$$

Nb₂O₅ Impacts SEY and Dielectric Losses

Fundamentals

Amorphous Nb₂O₅ is energetically more favorable

Non-stoichiometric phases lead to dangling bonds

Two-Level Systems

Nb₂O₅ Impacts SEY and Dielectric Losses

Fundamentals

Ta₂O₅ as a Potential Coating Material for SRF Cavities

Hypothesis & Motivation

ex-situ	Baseline /Å	After Coating /Å	After Baking /Å
Nb ₂ O ₅	20	18	-
Al_2O_3	-	172	170

SRF 2023 - Zaidman - WEPWB072

Baking removes the Nb₂O₅-layer!

Ta₂O₅ exhibit lower TLS density than Nb oxides, which has been shown to improve qubit lifetimes

ALD Enables Precise Ta₂O₅ Thin Film Growth

Methodology – ALD

L. Mai, (2020), DOI:10.13154/294-7658.

Schematic layout of the ALD system

 \rightarrow thermal ALD requires two chemicals, one precursor: Ta(OEt)₅, one co-reactant: H₂O The deposited

ALD enables precise and uniform coatings through self-limiting reactions

Methodology – Process Adjustments

Methodology – Process Adjustments

Final recipe for planar samples (GPC ~ 0.07 nm/Cycle)

Phase	Time /s	
	Purge	5
Internal Boost	Prec. Puls	30
internal boost	Pulse	2
	Purge	10
	Pulse	0.5
Precursor (Ta(OEt) ₅)	Exposure	10
(- (- 75)	Purge	60
	Pulse	0.5
Co-Reactant (H ₂ O)	Exposure	10
- (2)	Purge	60

Position	Temperature /°C	
Precursor	190	
Co-Reactant	20	
Chamber	200	
Lid	200	
Exhaust	120	

N₂ Flow /SCCM

20

Main system modifications during optimization

Software Correction

Fully Heated System

Internal Boost

Problem: Low material flow of the precursor due to the low vapor pressure

Problem: Material decomposition if precursor temperature is too high

Solution: Increasing the pressure in the precursor container

Methodology – Process Adjustments

Final recipe for planar samples

Phase	Time /s	
	Purge	5
Internal Deset	Prec. Puls	30
Internal Boost	Pulse	2
	Purge	10
_	Pulse	0.5
Precursor (Ta(OEt) ₅)	Exposure	10
(14(021)5)	Purge	60
	Pulse	0.5
Co-Reactant (H₂O)	Exposure	10
(1.120)	Purge	60

Examplary ALD Process with internal boost

Methodology – Process Adjustments

Examplary ALD Process with internal boost

Cavity Coating Challanges – Full Coverage & Uniformity

Discussion – Challenges in Application

Goal: Adapt ALD recipe to cavity geometries

Sample holder enables measurements of the thickness gradient in the cavity

Dummy cavity sample holder for planar Si samples

Problem: Recipes show high thickness gradients across the cavity volume

Possible Solution: Flow-Through Systems (chemicals must pass through the entire cavity)

Cavity Coating Challanges Impact Uniformity

Discussion – Challenges in Application

Recipe parameter set changed between the runs

Full coverage of the cavity accomplished

Uniform cavity coating not achieved

But: flow-through system enables thicker coatings in the top tube of the cavity

XRD Confirms Crystallization of Ta₂O₅

Results

XRD Analysis was conducted to investigate the structural properties of Ta₂O₅

Increased crystallinity in ${\rm Ta_2O_5}$ films can reduce the presence of TLS

As-deposited Ta₂O₅ films are amorphous

Analysis of annealed sample indicates the formation of a crystalline phase

Hexagonal cell

Orthorhombic cell

SEY Measurements Shows Lower Electron Emission in Ta₂O₅

Results

Air exposed niobium has an SEY of 2.2

R. Noer, S. Mitsunobu, Y. Kijima, and K. Saito. Secondary electron yield of nb rf cavity surfaces. 10th Workshop on RF Superconductivity, 2001.

A high SEY increases the likelihood of secondary electron avalanches, which can lead to multipacting

As-deposited ${\rm Ta_2O_5}$ shows a significant decrease in SEY compared to as-deposited ${\rm Al_2O_5}$

Post-deposition thermal annealing at 800°C for 3h decreased the SEY to ~2.4

Ta₂O₅ Shows Potential but Needs Optimization

Conclusion

ALD → planar samples

Optimization resulted a uniform and reproducible coating

ALD → cavity structures

- · Full coating coverage achieved
- Thickness gradient across the cavity observed (~70 to ~7nm)
 - Cause of gradient still under investigation

Material study

- XRD showed that crystalline Ta₂O₅ forms with annealing at 800°C for 3h
 - Crystalline structure may reduce the TLS density
 - Phase transformation changes dielectric properties
 - Al₂O₃ requires higher crystalizing temperatures >1000°C
- Ta₂O₅ shows lower SEY value as Al₂O₃
 - Ta₂O₅ as-deposited shows reduction of ~14%, annealed of ~31% compared to Al₂O₃
 - Decreased SEY could reduce impact of multipacting in cavities

Further Research Can Improve Coating Quality

Outlook

Precursor Output Stability

→ Unable to monitor precursor release dynamically. Installing a bubbler device could stabilize vapor pressure and improve reproducibility.

Potential Cavity Seal Leakage

→ Seal operating near 200°C may cause leakage, affecting precursor distribution and coating uniformity

Cavity Recipe Requires Further Optimization

→ Complex geometry demands further optimized process times and temperatures to ensure homogeneous deposition

The results demonstrate that Ta_2O_5 coatings offer promising properties for SRF cavities, with ALD proving to be a viable deposition method that can be further optimize to enhance its potential.

Acknowledgments

Thanks to

- My examiners, Prof. Wolfgang Hillert and Dr. Marc Wenskat, and my supervisors, Dr. Robert Zierold and Dr. Getnet Deyu.
- **My friends and colleagues**, Lea, Chirag, Rezvan, Chris, Jonas, Isabel, Leon, Julia, Giovanni, R.d.ü.T., and many others, for their support and encouragement.

