Graphing the Dark Sector: Anomalous Shower Detection with GNNs in the ATLAS Calorimeters

Scientific Computing Seminar 20.06.2025, DESY

Lukas Bauckhage^{1,2}

¹Deutsches Elektronen-Synchrotron DESY

²Physikalisches Institut Universität Bonn

Previous Talk

Talk at last year's SciComp Workshop

FH SciComp Workshop 2024

- Jul 1, 2024, 2:00 PM → Jul 2, 2024, 2:00 PM Europe/Berlin
- Seminar Room 4a/b (DESY Campus Hamburg)
- 8. CNNs and GNNs for tagging anomalous showers with ATLAS
- Lukas Bauckhage (ATLAS (ATLAS Upgrade))

O 7/2/24, 11:00 AM

Scientific Computing III

This talk will discuss recent work towards developing a ML (CNN/GNN) tagger to distinguish anomalous showers caused by the decays of long-lived particles from QCD jets with the ATLAS detector

Previous Talk

Talk at last year's SciComp Workshop

FH SciComp Workshop 2024

- Jul 1, 2024, 2:00 PM → Jul 2, 2024, 2:00 PM Europe/Berlin
- Seminar Room 4a/b (DESY Campus Hamburg)
- 8. CNNs and GNNs for tagging anomalous showers with ATLAS
- Lukas Bauckhage (ATLAS (ATLAS Upgrade))

O 7/2/24, 11:00 AM

Scientific Computing III

This talk will discuss recent work towards developing a ML (CNN/GNN) tagger to distinguish anomalous showers caused by the decays of long-lived particles from QCD jets with the ATLAS detector

⇒ Loads of updates!

Previous Talk

(in this Seminar)

(indico)

CaloClouds: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation

Scientific Computing Seminar DESY, 23.05.2025

E. Buhmann², H. Day-Hall¹, T. Buss², F. Gaede¹, G. Kasieczka², W. Korcari², **A. Korol^{1,*}**, K. Krüger¹, P. McKeown^{1,3}

¹ Deutsches Elektronen-Synchrotron, DESY

² University of Hamburg, UHH

³ CERN

*anatolii.korol@desy.de

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

HELMHOLTZ

Introduction

Standard Tools and Methods

Simulat	tion	F	Reconstruction			Analysis		
Matrix-element Detecto Calculation Simulati		-		Jet Tagging & Vertexing		alibration	Unfolding	
Parton-shower / Hadronization		Digitization	Track Find & Fitting	Track Finding Partic & Fitting & Par			Likelihood Fitting	
Numerical Integration	Markov Chain Monte Carlo	Topological clustering	Kalman Fil & Fitting	&	Conformal Fits Hough ransform	T	Statistical Techniques, Bayesian Inference	

Standard Tools and Methods

ML Edition

Simulation

Matrix-element

Calculation

Detector

Topoclusters & Spacepoints

Jet Tagging & Vertexing **Analysis**

Calibration

Unfolding

Omnifold and

Inference

Likelihood-free

Parton-shower / Hadronization

Digitization

Track Finding & Fitting

Reconstruction

Particle ID & Particle Flow

Likelihood

Fitting

Generative Models: GANs, VAEs,

Normalizing Flows and Diffusion

Deep Full Event

Metric Learning,

Simulation

Object

Condensation

Reconstruction

CNNs, Graph

Neural Networks &

Transformers

Symmetric ML

& Equivariance

Autoencoders

& Anomaly Detection

ML Edition

³ Deutsches Elektronen-Synchrotron, DESY
² University of Hamburg, UHH
³ CERN
*anatolii.korol@desy.de

ML Edition

ATLAS Preliminary LAr Barrel

Energy deposits cells

How to represent calorimeter showers in data?

(indico)

The Right Data Representation Can Turn an Impossible Problem into an Easy One

Polar coordinates

impossible task for linear model

Cartesian coordinates

easy to solve with vertical line

Figure from:

Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville, https://www.deeplearningbook.org/

DESY. | Scientific Computing Seminar, 23.05.25 | Anatolii Korol

Page 7

Selected Benchmark Study

Axion-Like Particles (ALPs)

- $g_{a\gamma\gamma}, m_a$ free parameters
- Dark Matter candidate: non-thermally in early universe

- Mediator in Dark Sector theories
- Produced in H decays (Higgs portal theories)

ALPs in Higgs Decays

- Z → II: simple and clean signature
- Main background:Z + jets or Z + photons

ALPs in Higgs Decays

- Z → II: simple and clean signature
- Main background:
 Z + jets or Z + photons
- 2 categories:
 - "Resolved"/Separated: high ALP mass
 - "Merged"/Collimated: low ALP mass

ALPs in Higgs Decays

- Z → II: simple and clean signature
- Main background:
 Z + jets or Z + photons
- 2 categories:
 - "Resolved"/Separated: high ALP mass
 - "Merged"/Collimated: low ALP mass
- $H \rightarrow 2a \rightarrow 4\gamma$ at ATLAS: arXiv:2312.03306

Prompt Decay Analysis

- Search for H → Za in Run 2 data
- Promptly decaying ALP
- Trigger on Z decay leptons
- $m_a \in [0.1, 31] \,\text{GeV}$

arXiv:2312.01942

Prompt Decay Analysis

- Search for H → Za in Run 2 data
- Promptly decaying ALP
- Trigger on Z decay leptons
- $m_a \in [0.1, 31] \, \text{GeV}$
- $m_a/C_{a\gamma\gamma}$ also allow for long-lived ALPs

arXiv:2312.01942

Displaced Showers in the ATLAS Detector

Photon Reconstruction Efficiency

- Reconstruction efficiency of ALP decay photons as function of Lxv
- At HCAL: photon reco efficiency = 0

Photon Reconstruction Efficiency

- Reconstruction efficiency of ALP decay photons as function of L_{xy}
- At HCAL: photon reco efficiency = 0

For large L_{xv} we need jets!

Background Jets

Background Jets

Background Jets

Jet Tagging with CNNs and GNNs

How to identify displaced photons as jets?

2 approaches

How to identify displaced photons as jets?

2 approaches

How to identify displaced photons as jets?

2 approaches

Which one performs better on the task?

Input Processing

Input Processing Recipe

Input Processing

Input Processing

Image Building

- Images binned in $\eta \times \phi = 15 \times 15$ bins
- Sph. symmetry, high E in center 🔽
- Bound to fixed-size inputs
- Barrel, Endcap, Barrel ext. stacked

Graph Building

- Nodes = $[E, \eta, \phi, \ell]$ of clusters
- Edges = $\triangle R$ between clusters

○ $\Delta \ell = 0$: if $\Delta R \le 0.6$

○ $\Delta \ell = 1$: if $\Delta R \leq 0.6$

Model Architectures

CNN:

- Tensorflow
- Based on CNN developed for dark photon analysis (<u>arXiv:2206.12181</u>)
- Conv3D + Pooling, Dense layers

GNN:

- PyTorch + <u>pytorch geometric</u>
- Based loosely on <u>jetgraphs library</u>
- Convolution/Attention Graph Filters + Pooling

Hyperparameter Optimization

- Fully parallelized grid scans performed for CNN+GNN
- For 1 benchmark signal (0.4GeV, medium lifetime)

green line: best hyperparam configuration

& similar for the CNN

Model Architectures after Optimization

C++ Framework Integration

- Python framework good for training & evaluation
- For analysis big scale inference: Implement model into ATLAS data processing framework (TopCPToolkit) C++
- CaloClusters can be huge in data! (esp. for backgrounds with many jets)
 - → Only save output score for each jet & drop clusters afterwards!

C++ Framework Integration

- Python framework good for training & evaluation
- For analysis big scale inference: Implement model into ATLAS data processing framework (TopCPToolkit) C++
- CaloClusters can be huge in data! (esp. for backgrounds with many jets)
 - → Only save output score for each jet & drop clusters afterwards!

Requires algorithm written in C++ X

C++ Framework Integration

- Python framework good for training & evaluation
- For analysis big scale inference: Implement model into ATLAS data processing framework (TopCPToolkit) C++
- CaloClusters can be huge in data! (esp. for backgrounds with many jets)
 - → Only save output score for each jet & drop clusters afterwards!

Requires algorithm written in C++ X

TopCPToolkit can talk to ONNX models

C++ Framework Integration

- Python framework good for training & evaluation
- For analysis big scale inference: Implement model into ATLAS data processing framework (TopCPToolkit) C++
- CaloClusters can be huge in data! (esp. for backgrounds with many jets)
 - → Only save output score for each jet & drop clusters afterwards!

Requires algorithm written in C++ X

- TopCPToolkit can talk to ONNX models
- To accomplish:
 - Export models to ONNX
 - 2. Rewrite model-inputs processing in C++ Algorithm

ONNX Export

Part I: The scatter_reduce fight

- ONNX does not support torch.scatter reduce with include self=False
- E.g. GATv2Conv layers in GNN from torch geometric use this
- Luckily, there was a long-awaited fix to torch_geometric lib (commit)

GNN: variable-sized inputs ("dynamic axes"):

- No trivial task: Have to mimic exact behavior of e.g. graph building in C++ (incl. special-cases, numerical precision, ...)
- Step-by-step align graph building in both frameworks by matching output scores:

- No trivial task: Have to mimic exact behavior of e.g. graph building in C++ (incl. special-cases, numerical precision, ...)
- Step-by-step align graph building in both frameworks by matching output scores:

- No trivial task: Have to mimic exact behavior of e.g. graph building in C++ (incl. special-cases, numerical precision, ...)
- Step-by-step align graph building in both frameworks by matching output scores:

- No trivial task: Have to mimic exact behavior of e.g. graph building in C++ (incl. special-cases, numerical precision, ...)
- Step-by-step align graph building in both frameworks by matching output scores:

- No trivial task: Have to mimic exact behavior of e.g. graph building in C++ (incl. special-cases, numerical precision, ...)
- Step-by-step align graph building in both frameworks by matching output scores:

Recent Results

• (0.4GeV, medium lifetime sample)

• (0.4GeV, medium lifetime sample)

(0.4GeV, medium lifetime sample)

So far only trained on ma=0.4GeV (merged) sample

So far only trained on ma=0.4GeV (merged) sample

Separate GNNs for merged/resolved topology?

So far only trained on ma=0.4GeV (merged) sample

Separate GNNs for merged/resolved topology?

Train 2 GNNs on merged (0.4GeV) and resolved (9GeV) scenario → cross-tests!

So far only trained on ma=0.4GeV (merged) sample

Separate GNNs for merged/resolved topology?

1) Resolved

2) Merged

So far only trained on ma=0.4GeV (merged) sample

Separate GNNs for merged/resolved topology?

1) Resolved

Train 2 GNNs on merged (0.4GeV) and resolved (9GeV) scenario → cross-tests!

- Both GNNs perform well on both test datasets!
- → no need for separate GNNs for merged/resolved!

Can train 1 GNN for both scenarios!

GNN Prompt Photon Background

Other signal topologies: what about other backgrounds?

- Idea: Train separate GNNs on 4 datasets different <u>backgrounds</u> (same signal)
 (X% photon gun + 1-X% QCD jets)
- Here: Test on 100% QCD jets and 100% photon gun

Other signal topologies: - what about other backgrounds?

- Idea: Train separate GNNs on 4 datasets different <u>backgrounds</u> (same signal) (X% photon gun + 1-X% QCD jets)
- Here: Test on 100% QCD jets and 100% photon gun

Other signal topologies: what about other backgrounds?

- Idea: Train separate GNNs on 4 datasets different <u>backgrounds</u> (same signal)
 (X% photon gun + 1-X% QCD jets)
- Here: Test on 100% QCD jets and 100% photon gun

- ⇒Low number of prompt photons to achieve for good separation
- \Rightarrow Trade-off: ? "Perfect mixture" ? for training around 25% 50% prompt γ

Combining what we have learned

The Ultimate Training

Idea: Train GNN on combined dataset

Combining what we have learned

The Ultimate Training

Idea: Train GNN on combined dataset

 Cluster images/graphs well suited to identify anomalous (here: displaced photon-) showers

- Cluster images/graphs well suited to identify anomalous (here: displaced photon-) showers
- GNN seems to be preferred solution in terms of performance here

- Cluster images/graphs well suited to identify anomalous (here: displaced photon-) showers
- GNN seems to be preferred solution in terms of performance here
- No need to have separate GNNs for different signal topologies

- Cluster images/graphs well suited to identify anomalous (here: displaced photon-) showers
- GNN seems to be preferred solution in terms of performance here
- No need to have separate GNNs for different signal topologies
- With ~low fraction of training data, GNN can achieve good separation against prompt photons

- Cluster images/graphs well suited to identify anomalous (here: displaced photon-) showers
- GNN seems to be preferred solution in terms of performance here
- No need to have separate GNNs for different signal topologies
- With ~low fraction of training data, GNN can achieve good separation against prompt photons
- Next: Evaluating signal model dependence of GNN tagger

What else can you do with GNNs?

(A Cliffhanger)

- <u>Exa.TrkX</u>: advanced tracking with GNNs in HEP
- Side-project with Federico and Thomas
- Tracking at future muon collider experiments (e.g. MAIA)
- Incl. timing (4D Tracking)

Thank you!

Backup

Photon Reconstruction Efficiency

Overlap Removal

Tagging efficiency Lxy

Output Score Distribution Features

