Determination of slepton properties in scenarios with small mass differences

Mikael Berggren¹

¹DESY, Hamburg

LCForum, DESY, Feb 7-9, 2012

Outline

Introduction

The $\tilde{\tau}$ channel

- Selection
- Mass and cross-section
- 3) μ channels
 - $\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L}$
 - $\tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0}$

The ẽ channel

- The standard SPS1a' e channel
- Mass and cross-section
- A variation: Near Degenerate ẽ

Summary and outlook

What can be done at ILC if SUSY exists, and is "next to LEP", and we use a real detector? And if the LSP-NLSP difference is small?

Look at the mSUGRA point SPS1a':

 $M_{1/2} = 250 \text{ GeV}, M_0 = 70 \text{ GeV}, A_0 = -300 \text{ GeV}, \tan \beta = 10, \mu > 0$ Just outside what is excluded by LEP and low-energy observations. Compatible with WMAP, with $\tilde{\chi}_1^0$ Dark Matter.

• All sleptons available.

No squarks.

• Lighter bosinos, up to $\tilde{\chi}_3^0$ (in $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_3^0$)

and use:

Full ILD simulation.

Full background: SUSY, SM, machine.

What can be done at ILC if SUSY exists, and is "next to LEP", and we use a real detector ? And if the LSP-NLSP difference is small ?

First of all

Many contributors, in many scenarios over many years. Here only ILD full-sim results from LOI and later will be mentioned. My apologises to all those that have contributed earlier analyses, from SiD, ...

Look at the mSUGRA point SPS1a':

 $M_{1/2} = 250 \text{ GeV}, M_0 = 70 \text{ GeV}, A_0 = -300 \text{ GeV}, \tan \beta = 10, \mu > 0$ Just outside what is excluded by LEP and low-energy observations. Compatible with WMAP, with $\tilde{\chi}_1^0$ Dark Matter.

- All sleptons available.
- No squarks.
- Lighter bosinos, up to $ilde{\chi}^0_3$ (in $e^+e^ightarrow ilde{\chi}^0_1 ilde{\chi}^0_3$)

What can be done at ILC if SUSY exists, and is "next to LEP", and we use a real detector? And if the LSP-NLSP difference is small?

Look at the mSUGRA point SPS1a':

 $M_{1/2} = 250 \text{ GeV}, M_0 = 70 \text{ GeV}, A_0 = -300 \text{ GeV}, \tan \beta = 10, \mu > 0$ Just outside what is excluded by LEP and low-energy observations. Compatible with WMAP, with $\tilde{\chi}_1^0$ Dark Matter.

- All sleptons available.
- No squarks.
- Lighter bosinos, up to $\tilde{\chi}_3^0$ (in $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_3^0$)

and use:

- Full ILD simulation.
- Full background: SUSY, SM, machine.

What can be done at ILC if SUSY exists, and is "next to LEP", and we use a real detector? And if the LSP-NLSP difference is small?

Look at the mSUGRA point SPS1a':

 $M_{1/2} = 250 \text{ GeV}, M_0 = 70 \text{ GeV}, A_0 = -300 \text{ GeV}, \tan \beta = 10, \mu > 0$ Just outside what is excluded by LEP and low-energy observations. Compatible with WMAP, with $\tilde{\chi}_1^0$ Dark Matter.

- All sleptons available.
- No squarks.
- Lighter bosinos, up to $\tilde{\chi}_3^0$ (in $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_3^0$)

and use:

- Full ILD simulation.
- Full background: SUSY, SM, machine.

What can be done at ILC if SUSY exists, and is "next to LEP", and we use a real detector ? And if the LSP-NLSP difference is small ?

Look at the mSUGRA point SPS1a':

 $M_{1/2} = 250 \text{ GeV}, M_0 = 70 \text{ GeV}, A_0 = -300 \text{ GeV}, \tan \beta = 10, \mu > 0$ SPS1a' is excluded by LHC, but:

- LHC only excludes 1:st & 2:nd generation squarks. : not visible at ILC anyhow.
- The current LHC limits have no influence at all on the EW sector.
- "Easy" to find models with the same EW-sector, but heavier gen. 1&2 squarks.

Still a good show-case of ILC

• Full ILD Simulation.

Full background: SUSY, SM, machine.

SPS1a'

- In SPS1a', the $\tilde{\tau}_1$ is the NLSP.
- $M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}} = 184 \text{ GeV}/c^2$.
- $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}$: low ΔM . $M_{\tilde{e}_R} = M_{\tilde{\mu}_R} = 125.3 \text{ GeV}$
- $M_{\tilde{\tau}_2}$ = 194.9 GeV, $M_{\tilde{e}_L} = M_{\tilde{\mu}_L} = 189.9 \text{ GeV} > M_{\tilde{\chi}_2^0}$ and $M_{\tilde{\chi}_4^{\pm}}$: cascades
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.6 \text{ GeV}, E_{\tau,max} = 42.5 \text{ GeV}$: $\gamma \gamma$ background.
- For $\tilde{\tau}_2$: $E_{\tau,min} = 35.0 \text{ GeV}$, $E_{\tau,max} = 152.2 \text{ GeV}$: $WW \rightarrow l\nu l\nu$ background.
- For \tilde{e}_{R} or $\tilde{\mu}_{R}$: $E_{l,min} = 6.6 \text{ GeV}, E_{l,max} = 91.4 \text{ GeV}$: Neither $\gamma\gamma$ nor $WW \rightarrow l\nu l\nu$ background severe.
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.
- For pol=(-1,1): σ(ẽ_Rẽ_R) = 1.3 pb !

SPS1a'

- In SPS1a', the $\tilde{\tau}_1$ is the NLSP.
- $M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}} = 184 \text{ GeV}/c^2$.
- $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}$: low ΔM . $M_{\tilde{e}_R} = M_{\tilde{\mu}_R} = 125.3 \text{ GeV}$
- $M_{\tilde{\tau}_2}$ = 194.9 GeV, $M_{\tilde{e}_L}$ = $M_{\tilde{\mu}_L}$ = 189.9 GeV> $M_{\tilde{\chi}_2^0}$ and $M_{\tilde{\chi}_1^{\pm}}$: cascades
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.6 \text{ GeV}, E_{\tau,max} = 42.5 \text{ GeV}$: $\gamma \gamma$ background.
- For $\tilde{\tau}_2$: $E_{\tau,min} = 35.0 \text{ GeV}, E_{\tau,max} = 152.2 \text{ GeV}$: $WW \rightarrow l\nu l\nu$ background.
- For \tilde{e}_{R} or $\tilde{\mu}_{R}$: $E_{l,min} = 6.6 \text{ GeV}, E_{l,max} = 91.4 \text{ GeV}$: Neither $\gamma\gamma$ nor $WW \rightarrow l\nu l\nu$ background severe.
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.
- For pol=(-1,1): σ(ẽ_Rẽ_R) = 1.3 pb !

SPS1a'

•
$$M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$$
, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}} = 184 \text{ GeV}/c^2$.

- $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}$: low ΔM . $M_{\tilde{e}_R} = M_{\tilde{\mu}_R} = 125.3 \text{ GeV}$
- $M_{\tilde{\tau}_2}$ = 194.9 GeV, $M_{\tilde{e}_L}$ = $M_{\tilde{\mu}_L}$ = 189.9 GeV> $M_{\tilde{\chi}_2^0}$ and $M_{\tilde{\chi}_1^{\pm}}$: cascades
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.6 \text{ GeV}, E_{\tau,max} = 42.5 \text{ GeV}$: $\gamma \gamma$ background.
- For $\tilde{\tau}_2$: $E_{\tau,min} = 35.0 \text{ GeV}, E_{\tau,max} = 152.2 \text{ GeV}$: $WW \rightarrow l\nu l\nu$ background.
- For ẽ_Ror μ̃_R: E_{l,min} = 6.6 GeV, E_{l,max} = 91.4 GeV: Neither γγ nor
 WW → lνlν background severe.
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.
- For pol=(-1,1): σ(ẽ_Rẽ_R) = 1.3 pb !

SPS1a'

•
$$M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$$
, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}} = 184 \text{ GeV}/c^2$.

- $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}$: low ΔM . $M_{\tilde{e}_R} = M_{\tilde{\mu}_R} = 125.3 \text{ GeV}$
- $M_{\tilde{\tau}_2}$ = 194.9 GeV, $M_{\tilde{e}_L} = M_{\tilde{\mu}_L}$ = 189.9 GeV> $M_{\tilde{\chi}_2^0}$ and $M_{\tilde{\chi}_1^{\pm}}$: cascades
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.6 \text{ GeV}, E_{\tau,max} = 42.5 \text{ GeV}$: $\gamma \gamma$ background.
- For $\tilde{\tau}_2$: $E_{\tau,min} = 35.0 \text{ GeV}, E_{\tau,max} = 152.2 \text{ GeV}$: $WW \rightarrow l\nu l\nu$ background.
- For ẽ_Ror μ̃_R: E_{l,min} = 6.6 GeV, E_{l,max} = 91.4 GeV: Neither γγ nor
 WW → lνlν background severe.
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.
- For pol=(-1,1): σ(ẽ_Rẽ_R) = 1.3 pb !

SPS1a'

•
$$M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$$
, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}} = 184 \text{ GeV}/c^2$.

- $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}: \text{low } \Delta M. M_{\tilde{e}_R} = M_{\tilde{\mu}_R} = 125.3 \text{ GeV}$
- $M_{\tilde{\tau}_2}$ = 194.9 GeV, $M_{\tilde{e}_L} = M_{\tilde{\mu}_L}$ = 189.9 GeV> $M_{\tilde{\chi}_2^0}$ and $M_{\tilde{\chi}_1^{\pm}}$: cascades
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.6 \text{ GeV}, E_{\tau,max} = 42.5 \text{ GeV}$: $\gamma \gamma$ background.
- For $\tilde{\tau}_2$: $E_{\tau,min} = 35.0 \text{ GeV}, E_{\tau,max} = 152.2 \text{ GeV}$: $WW \rightarrow l\nu l\nu$ background.
- For ẽ_Ror μ̃_R: E_{l,min} = 6.6 GeV, E_{l,max} = 91.4 GeV: Neither γγ nor
 WW → lνlν background severe.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.
- For pol=(-1,1): σ(ẽ_Rẽ_R) = 1.3 pb !

SPS1a'

•
$$M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$$
, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}} = 184 \text{ GeV}/c^2$.

- $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}$: low ΔM . $M_{\tilde{e}_R} = M_{\tilde{\mu}_R} = 125.3 \text{ GeV}$
- $M_{\tilde{\tau}_2}$ = 194.9 GeV, $M_{\tilde{e}_L} = M_{\tilde{\mu}_L}$ = 189.9 GeV> $M_{\tilde{\chi}_2^0}$ and $M_{\tilde{\chi}_1^{\pm}}$: cascades
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.6 \text{ GeV}, E_{\tau,max} = 42.5 \text{ GeV}$: $\gamma \gamma$ background.
- For $\tilde{\tau}_2$: $E_{\tau,min} = 35.0 \text{ GeV}, E_{\tau,max} = 152.2 \text{ GeV}$: $WW \rightarrow l\nu l\nu$ background.
- For ẽ_Ror μ̃_R: E_{l,min} = 6.6 GeV, E_{l,max} = 91.4 GeV: Neither γγ nor
 WW → lνlν background severe.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.
- For pol=(-1,1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb}$!

Extracting the $\tilde{\tau}$ properties

Use polarisation (0.8,-0.22) to reduce bosino background.

From decay kinematics:

- $M_{\tilde{\tau}}$ from end-point of spectrum = $E_{\tau,max}$.
- Other end-point hidden in γγ background: Must get M_{χ10} from other sources. (μ̃, ẽ...)

From cross-section:

•
$$\sigma_{\tilde{\tau}} = A(\theta_{\tilde{\tau}}, \mathcal{P}_{beam}) \times \beta^3 / s$$
, so
• $M_{\tilde{\tau}} = E_{beam} \sqrt{1 - (\sigma s / A)^{2/3}}$: no $M_{\tilde{\chi}_1^0}$

From decay spectra:

• \mathcal{P}_{τ} from exclusive τ decay-mode(s): handle on mixing angles $\theta_{\tilde{\tau}}$ and $\theta_{\tilde{\chi}_{1}^{0}}$.

Topology selection

$\tilde{\tau}$ properties:

- Only two τ :s in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.

+ anti $\gamma\gamma$ cuts (see backup)

Select this by:

- Exactly two jets.
- *N_{ch}* < 10
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \, {
 m GeV}/c^2$,
- *E_{vis}* < 300 GeV,
- $M_{miss} > 250 \text{ GeV}/c^2$,
- No particle with momentum above 180 GeV/*c* in the event.

Topology selection

$\tilde{\tau}$ properties:

- Only two τ :s in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.

+ anti $\gamma\gamma$ cuts (see backup)

Select this by:

- Exactly two jets.
- *N_{ch}* < 10
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- *E_{vis}* < 300 GeV,
- $M_{miss} > 250 \text{ GeV}/c^2$,
- No particle with momentum above 180 GeV/*c* in the event.

Topology selection

$\tilde{\tau}$ properties:

- Only two τ :s in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti $\gamma\gamma$ cuts (see backup)

Select this by:

- Exactly two jets.
- *N_{ch}* < 10
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- *E_{vis}* < 300 GeV,
- $M_{miss} > 250 \text{ GeV}/c^2$,
- No particle with momentum above 180 GeV/c in the event.

$\tilde{\tau}_1$ and $\tilde{\tau}_2$ further selections

• Channel specific anti $\gamma\gamma$

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$

τ₂:

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

$\tilde{\tau}_1$ and $\tilde{\tau}_2$ further selections

• Channel specific anti $\gamma\gamma$

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$

τ₂:

- Other side jet not e or μ
- Most energetic jet not e or µ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1}, q_{jet2} cosθ_{jet2})

$\tilde{\tau}_1$ and $\tilde{\tau}_2$ further selections

• Channel specific anti $\gamma\gamma$

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$

τ₂:

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

$\tilde{\tau}_1$ and $\tilde{\tau}_2$ further selections

• Channel specific anti $\gamma\gamma$

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$

τ₂:

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

$\tilde{\tau}_1$ and $\tilde{\tau}_2$ further selections

• Channel specific anti $\gamma\gamma$

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$

τ₂:

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

$\tilde{\tau}_1$ and $\tilde{\tau}_2$ further selections

• Channel specific anti $\gamma\gamma$

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

$\tilde{\tau}_1$ and $\tilde{\tau}_2$ further selections

• Channel specific anti $\gamma\gamma$

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$

τ₂:

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

Mass and cross-section

- Only the upper end-point is relevant.
- Background subtraction:

 - *τ˜*₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

Mass and cross-section

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Substantial SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
 - ⁷₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Substantial SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
 - [˜]₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Substantial SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
 - [˜]₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

Mass and cross-section

10 E

Fitting the $\tilde{\tau}$ mass

• Only the upper end-point is relevant.

Results for $\tilde{\tau}_1$

 $M_{\tilde{ au}_1} = 107.73^{+0.03}_{-0.05} \,\mathrm{GeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}^0_1}).$ The error from $M_{\tilde{\chi}^0_1}$ largely dominates.

extrapolate. • $\tilde{\tau}_2$: ~ no SUSY background Results for $\tilde{\tau}_2$

$$M_{ ilde au_2} = 183^{+11}_{-5}~{
m GeV}/c^2 \oplus 18\Delta(M_{ ilde au_2}).$$

The error from the endpoint largely dominates.

• Fit line to (data-background fit).

Fitting the $\tilde{\tau}$ mass

- Only the upper end-point is relevant.
- Background subtraction:
- $\tilde{\tau}_1$: Substantial SUSY Results from cross-section for $\tilde{\tau}_1$

H.

$$\Delta(\textit{N}_{\textit{signal}})/\textit{N}_{\textit{signal}} = 3.1\%
ightarrow \Delta(\textit{M}_{ ilde{ au}_1}) = 3.2~{
m GeV}/\textit{c}^2$$

Results from cross-section for $\tilde{\tau}_2$

$$\Delta(N_{signal})/N_{signal} = 4.2\% \rightarrow \Delta(M_{\tilde{\tau}_2}) = 3.6 \text{ GeV}/c^2$$

End-point + Cross-section $\rightarrow \Delta(M_{\tilde{\chi}_1^0}) = 1.7 \text{ GeV}/c^2$

• Fit line to (data-background fit).

μ channels

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L} \rightarrow \mu\mu\tilde{\chi}_1^0\tilde{\chi}_1^0$
- $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \mu \tilde{\mu}_R \tilde{\chi}_1^0 \rightarrow \mu \mu \tilde{\chi}_1^0$

• Momentum of μ :s

• E_{miss}

• $M_{\mu\mu}$

• β of μ system.

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L} \rightarrow \mu\mu\tilde{\chi}_1^0\tilde{\chi}_1^0$
- $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \mu \tilde{\mu}_R \tilde{\chi}_1^0 \rightarrow \mu \mu \tilde{\chi}_1^0$
- Momentum of μ :s

• E_{miss}

• $M_{\mu\mu}$

• β of μ system.

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L} \rightarrow \mu\mu\tilde{\chi}_1^0\tilde{\chi}_1^0$
- $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \mu \tilde{\mu}_R \tilde{\chi}_1^0 \rightarrow \mu \mu \tilde{\chi}_1^0$
- Momentum of μ :s
- E_{miss}
- Μ_{µµ}
- β of μ system.

μ channels

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L} \rightarrow \mu\mu\tilde{\chi}_1^0\tilde{\chi}_1^0$
- $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \mu \tilde{\mu}_R \tilde{\chi}_1^0 \rightarrow \mu \mu \tilde{\chi}_1^0$
- Momentum of μ :s
- E_{miss}
- Μ_{µµ}
- β of μ system.

 $\tilde{\mu}_{\mathrm{L}}\tilde{\mu}_{\mathrm{L}}$

$\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L}$

Selections

- $\theta_{\text{missing } p} \in [0.1\pi, 0.9\pi]$
- $\bullet ~~\mathsf{E}_{\textit{miss}} \in [200, 430] \mathrm{GeV}$
- $M_{\mu\mu} \notin [80, 100] \mathrm{GeV}$ and $> 30 \mathrm{GeV}/\textit{C}^2$
- Masses from edges. Beam-energy spread dominates error.

 $\tilde{\mu}_{\mathrm{L}}\tilde{\mu}_{\mathrm{L}}$

$\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L}$

Selections

- $\theta_{\text{missing } p} \in [0.1\pi, 0.9\pi]$
- $\bullet ~~\mathsf{E}_{\textit{miss}} \in [200, 430] \mathrm{GeV}$
- $M_{\mu\mu} \notin [80, 100] \text{GeV}$ and $> 30 \text{GeV}/c^2$
- Masses from edges. Beam-energy spread dominates error.

$$\Delta(M_{ ilde{\chi}_1^0}) = 920 \mathrm{MeV}/c^2$$

 $\Delta(M_{ ilde{\mu}_\mathrm{L}}) = 100 \mathrm{MeV}/c^2$

$\tilde{\chi}_1^0 \tilde{\chi}_2^0$

Selections

- $\theta_{missing p} \in [0.2\pi, 0.8\pi]$
- $\bullet \ p_{\textit{Tmiss}} > 40 \text{GeV}/\textit{c}$
- β of μ system > 0.6.
- $\bullet ~~\mathsf{E}_{\textit{miss}} \in [355, 395] \mathrm{GeV}/\textit{C}^2$

Mass from fit to invariant mass edge.

$\tilde{\chi}_1^0 \tilde{\chi}_2^0$

Selections

- $\theta_{missing p} \in [0.2\pi, 0.8\pi]$
- $\bullet \ p_{\textit{Tmiss}} > 40 \text{GeV}/\textit{c}$
- β of μ system > 0.6.
- $\bullet ~~\mathsf{E}_{\textit{miss}} \in [355, 395] \mathrm{GeV}/\textit{C}^2$

Mass from fit to invariant mass edge.

The *ẽ* channel

 $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb:}$ Hundreds of thousands of almost background-free events expected.

Most of the reduction of the SM backround can be taken over from the $\tilde{\tau}$ analysis.

Some changes needed:

- *E_{vis}* < 170 GeV (rather than 120).
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} \in [21, 105] \text{ GeV}$. (rather than $\in [0, 30] \text{ GeV}$)
- $|\cos \theta_{missing momentum}| < 0.95$ (rather than 0.8).
- Both particles should be electron-like (rather than at most one).

The *ẽ* channel

 $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb:}$ Hundreds of thousands of almost background-free events expected.

Most of the reduction of the SM backround can be taken over from the $\tilde{\tau}$ analysis.

Some changes needed:

- *E_{vis}* < 170 GeV (rather than 120).
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} \in [21, 105] \text{ GeV}$. (rather than $\in [0, 30] \text{ GeV}$)
- $|\cos \theta_{missing momentum}| < 0.95$ (rather than 0.8).
- Both particles should be electron-like (rather than at most one).

The *ẽ* channel

 $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb:}$ Hundreds of thousands of almost background-free events expected.

Most of the reduction of the SM backround can be taken over from the $\tilde{\tau}$ analysis.

Some changes needed:

- $E_{vis} < 170 \text{ GeV}$ (rather than 120).
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} \in [21, 105] \text{ GeV}$. (rather than $\in [0, 30] \text{ GeV}$)
- $|\cos \theta_{missing momentum}| < 0.95$ (rather than 0.8).
- Both particles should be electron-like (rather than at most one).

- Signal: 227750 events (solid: fullsim, dashed: generator)
- Background: SUSY 1560 events, SM 2219 events.
- Efficiency: 67.8 %.
- Masses:
 - From average and RMS (true: 125.3 & 97.7):
 *M*_{č_R} = 126.5 ± 0.5 GeV/*c*² and
 - $M_{\tilde{\chi}_{1}^{0}} = 99.6 \pm 0.4 \, \mathrm{GeV}/c^{2}$
 - From $E_{vis} \in [40, 150]$ GeV:
 - $M_{\tilde{e}_{R}} = 124.6 \pm 0.5 \text{ GeV}/c^{2}$ and $M_{\tilde{\chi}_{1}^{0}} = 98.3 \pm 0.4 \text{ GeV}/c^{2}$ (potentionally: $\pm 0.21 \text{ GeV}/c^{2}$ and
 - $\pm 0.17 \text{ GeV}/c^2$

- Signal: 227750 events (solid: fullsim, dashed: generator)
- Background: SUSY 1560 events, SM 2219 events.
- Efficiency: 67.8 %.
- Masses:
 - From average and RMS (true: 125.3 & 97.7):
 - $\textit{M}_{\tilde{e}_R} = 126.5 \pm 0.5 \; \text{GeV}/\textit{c}^2$ and
 - $M_{\tilde{\chi}^0_1} = 99.6 \pm 0.4 \; {
 m GeV}/c^2$
 - From $E_{vis} \in [40, 150]$ GeV: $M_{\tilde{e}_{R}} = 124.6 \pm 0.5 \text{ GeV}/c^{2}$ and
 - $M_{\tilde{\chi}_1^0} = 98.3 \pm 0.4 \text{ GeV}/c^2$
 - (potentionally: $\pm 0.21 \text{ GeV}/c^2$ and

 $\pm 0.17 \text{ GeV}/c^2$

- Signal: 227750 events (solid: fullsim, dashed: generator)
- Background: SUSY 1560 events, SM 2219 events.
- Efficiency: 67.8 %.
- Masses:
 - From average and RMS (true: 125.3 & 97.7):
 - $\textit{M}_{\tilde{e}_{R}} = 126.5 \pm 0.5 ~{\rm GeV}/\textit{c}^{2}$ and
 - $M_{\tilde{\chi}^0_1} = 99.6 \pm 0.4 \; {
 m GeV}/c^2$
 - From *E_{vis}* ∈ [40, 150] GeV:
 - $M_{
 m \widetilde{e}_R} = 124.6 \pm 0.5~{
 m GeV}/c^2$ and $M_{
 m \widetilde{\chi}^0_1} = 98.3 \pm 0.4~{
 m GeV}/c^2$
 - (potentionally: $\pm 0.21 \text{ GeV}/c^2$ and

$$\pm 0.17 \; \text{GeV}/c^2$$
)

- Signal: 227750 events (solid: fullsim, dashed: generator)
- Background: SUSY 1560 events, SM 2219 events.
- Efficiency: 67.8 %.
- Masses:

Comming:

Integration over beam-spectrum and folding in detector-effects.

$$M_{\tilde{\chi}_{1}^{0}} = 99.6 \pm 0.4 \text{ GeV}/c^{2}$$
• From $E_{vis} \in [40, 150] \text{ GeV}$:

$$M_{\tilde{e}_{R}} = 124.6 \pm 0.5 \text{ GeV}/c^{2} \text{ and}$$

$$M_{\tilde{\chi}_{1}^{0}} = 98.3 \pm 0.4 \text{ GeV}/c^{2}$$
(potentionally: $\pm 0.21 \text{ GeV}/c^{2}$ and $\pm 0.17 \text{ GeV}/c^{2}$)
Kael Berggren (DESY) Sleptons at ILC LCForum, Feb 2012 13/2

Near Degenerate \tilde{e} and polarisation

(Preliminary work by M.B., G. Moortgat-Pick)

SUSY associates scalars to chiral (anti)fermions

What if $M_{\tilde{e}_L} \approx M_{\tilde{e}_R}$, so that thresholds can't separate $e^+e^- \rightarrow \tilde{e}_L \tilde{e}_L$, $\tilde{e}_R \tilde{e}_R$ and $\tilde{e}_R \tilde{e}_L$?

Model: SPS1a' like, but:

 $M_{\tilde{e}_{\rm L}}$ = 200 GeV and $M_{\tilde{e}_{\rm R}}$ = 195 GeV. Both decay 100 % to $\tilde{\chi}_1^0 e$.

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

Even with $P_{e^-} \ge +90\%$: No separation of $\tilde{e}_L^+ \tilde{e}_R^-$ and $\tilde{e}_R^+ \tilde{e}_R^-$: Ratio of the cross sections \approx constant.

Model: SPS1a' like, but:

 $M_{\tilde{e}_{\rm L}}$ = 200 GeV and $M_{\tilde{e}_{\rm R}}$ = 195 GeV. Both decay 100 % to $\tilde{\chi}_1^0 e$.

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

Even with $P_{e^-} \ge +90\%$: No separation of $\tilde{e}_L^+ \tilde{e}_R^-$ and $\tilde{e}_R^+ \tilde{e}_R^-$: Ratio of the cross sections \approx constant.

The handle: Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel. Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of Θ distribution with changed positron polarisation

However, the effect is small since t-channel always dominates ! \tilde{e} :s are heavy (and are scalars) \Rightarrow t- and s- channel kinematic distributions of the electrons are not very different.

The handle: Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel. Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of Θ distribution with changed positron polarisation

However, the effect is small since t-channel always dominates ! \tilde{e} :s are heavy (and are scalars) \Rightarrow t- and s- channel kinematic distributions of the electrons are not very different.

Analyse assuming 100 fb^{-1} for each of the polarisations configurations.

- P(e⁺) = ± 60 % ...
- ... and for P(e⁻)= ± 80 %
 P(e⁺) = 0

Mikael Berggren (DESY)

Analyse assuming 100 fb^{-1} for each of the polarisations configurations.

Reconstruct $\Theta_{\tilde{e}}$ event-by-event assuming $M_{\tilde{e}}$ and $M_{\tilde{\chi}_{1}^{0}}$ know.

Sleptons at ILC

Analyse assuming 100 fb $^{-1}$ for each of the polarisations configurations.

Analyse assuming 100 fb^{-1} for each of the polarisations configurations.

Analyse assuming 100 fb^{-1} for each of the polarisations configurations.

Analyse assuming 100 fb^{-1} for each of the polarisations configurations.

- All background SUSY and SM included.
- Beam-background included.
- After 4 ILC years:
 - $\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0})$. $\Delta(M_{\tilde{\tau}_2}) = 8 \text{ GeV}/c^2 \oplus 18\Delta(M_{\tilde{\tau}^0})$.
 - $\Delta(\mathcal{P}_{\tau}) \approx 6$ % (see backup).
 - For $e^+e^-
 ightarrow \tilde{\mu}_L \tilde{\mu}_L$, we find: $\Delta(M_{\tilde{\chi}^0_1}) = 920 {
 m MeV}/c^2$
 - $\Delta(M_{\tilde{\mu}_{\rm L}}) = 100 {\rm MeV}/c^2,$
 - For $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \mu \tilde{\mu}_R \tilde{\chi}_1^0 \to \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$, we find $\Delta(M_{\tilde{\chi}_2^0}) = 1.38 \text{GeV}/c^2$
 - Δ(M_{χ²}) = 400 MeV/c² (prospect: 170 MeV/c²)
 Δ(M_{ξ²}) = 500 MeV/c² (prospect: 210 MeV/c²)

- All background SUSY and SM included. .
- Beam-background included.
- After 4 ILC years:
 - $\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$
 - $\Delta(M_{\tilde{\tau}_2}) = 8 \text{ GeV}/c^2 \oplus 18\Delta(M_{\tilde{\chi}_1^0}).$
 - $\Delta(\mathcal{P}_{ au})pprox$ 6 % (see backup).
 - For $e^+e^-
 ightarrow ilde{\mu}_L$, we find: $\Delta(M_{\tilde{\chi}^0_1}) = 920 {
 m MeV}/c^2$
 - $\Delta(M_{\tilde{\mu}_{\rm L}}) = 100 {
 m MeV}/c^2$,
 - For $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \mu \tilde{\mu}_R \tilde{\chi}_1^0 \to \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$, we find $\Delta(M_{\tilde{\chi}_2^0}) = 1.38 \text{GeV}/c^2$
 - Δ(M_{χ²}) = 400 MeV/c² (prospect: 170 MeV/c²)
 Δ(M_{ξ²}) = 500 MeV/c² (prospect: 210 MeV/c²)

- All background SUSY and SM included.
- Beam-background included.
- After 4 ILC years:
 - $\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$ $\Delta(M_{\tilde{\tau}_2}) = 8 \text{ GeV}/c^2 \oplus 18\Delta(M_{\tilde{\chi}_1^0}).$
 - $\Delta(\mathcal{P}_{ au})pprox$ 6 % (see backup).
 - For $e^+e^- \rightarrow \tilde{\mu}_L \tilde{\mu}_L$, we find: $\Delta(M_{\tilde{\chi}^0_1}) = 920 \text{MeV}/c^2$
 - For $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \mu \tilde{\mu}_R \tilde{\chi}_1^0 \to \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$, we find $\Delta(M_{\tilde{\chi}_2^0}) = 1.38 \text{GeV}/c^2$
 - $\Delta(M_{\tilde{\chi}_1^0}) = 400 \text{ MeV}/c^2 \text{ (prospect: 170 MeV}/c^2 \text{)}$ $\Delta(M_{\tilde{e}_R}) = 500 \text{ MeV}/c^2 \text{ (prospect: 210 MeV}/c^2 \text{)}$

- All background SUSY and SM included.
- Beam-background included.
- After 4 ILC years:
 - $\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$ $\Delta(M_{\tilde{\tau}_2}) = 8 \text{ GeV}/c^2 \oplus 18\Delta(M_{\tilde{\chi}_1^0}).$
 - $\Delta(\mathcal{P}_{\tau}) \approx$ 6 % (see backup).
 - For $e^+e^- \rightarrow \tilde{\mu}_L \tilde{\mu}_L$, we find: $\Delta(M_{\tilde{\chi}_1^0}) = 920 \text{MeV}/c^2$
 - $\Delta(M_{\tilde{\mu}_{\rm L}})=100{\rm MeV}/c^2,$
 - For $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \mu \tilde{\mu}_R \tilde{\chi}_1^0 \to \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$, we find $\Delta(M_{\tilde{\chi}_2^0}) = 1.38 \text{GeV}/c^2$
 - $\Delta(M_{\tilde{\chi}_1^0}) = 400 \text{ MeV}/c^2 \text{ (prospect: 170 MeV}/c^2 \text{)}$ $\Delta(M_{\tilde{e}_R}) = 500 \text{ MeV}/c^2 \text{ (prospect: 210 MeV}/c^2 \text{)}$

- All background SUSY and SM included.
- Beam-background included.
- After 4 ILC years:
 - $\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$ $\Delta(M_{\tilde{\tau}_2}) = 8 \text{ GeV}/c^2 \oplus 18\Delta(M_{\tilde{\chi}_1^0}).$
 - $\Delta(\mathcal{P}_{ au}) \approx$ 6 % (see backup).
 - For $e^+e^- \rightarrow \tilde{\mu}_L \tilde{\mu}_L$, we find: $\Delta(M_{\tilde{\chi}_1^0}) = 920 \text{MeV}/c^2$
 - $\Delta(M_{\tilde{\mu}_{\rm L}})=100{\rm MeV}/c^2,$
 - For $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \mu \tilde{\mu}_R \tilde{\chi}_1^0 \to \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$, we find $\Delta(M_{\tilde{\chi}_2^0}) = 1.38 \text{GeV}/c^2$
 - $\Delta(M_{\tilde{\chi}_1^0}) = 400 \text{ MeV}/c^2 \text{ (prospect: 170 MeV}/c^2 \text{)}$ $\Delta(M_{\tilde{e}_R}) = 500 \text{ MeV}/c^2 \text{ (prospect: 210 MeV}/c^2 \text{)}$

At SPS1a' there are

- 10 masses
- Cross-sections for 13 channels
- >100 branching ratios
- Several mixing angles
- to measure at a 500 GeVILC.

We intend to define a similar point not excluded by LHC and systematically study it

- At different *E_{CMS}*
- With different beam-polarisations
- At different theory-points
- Main tool: Fast simulation tuned to full-simulation

At SPS1a' there are

- 10 masses
- Cross-sections for 13 channels
- >100 branching ratios
- Several mixing angles
- to measure at a 500 GeVILC.

We intend to define a similar point not excluded by LHC and systematically study it

- At different *E_{CMS}*
- With different beam-polarisations
- At different theory-points
- Main tool: Fast simulation tuned to full-simulation

At SPS1a' there are

- 10 masses
- Cross-sections for 13 channels
- >100 branching ratios
- Several mixing angles

to measure at a 500 GeVILC.

We intend to define a similar point not excluded by LHC and systematically study it

- At different E_{CMS}
- With different beam-polarisations
- At different theory-points
- Main tool: Fast simulation tuned to full-simulation

At SPS1a' there are

- 10 masses
- Cross-sections for 13 channels
- >100 branching ratios
- Several mixing angles

to measure at a 500 GeVILC.

We intend to define a similar point not excluded by LHC and systematically study it

- At different E_{CMS}
- With different beam-polarisations
- At different theory-points
- Main tool: Fast simulation tuned to full-simulation

THANK YOU !

Backup

BACKUP SLIDES

$\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma$ background ...

- Correlated cut in ρ and θ_{acop}: ρ > 2.7 sin θ_{acop} + 1.8. (ρ = P_T of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

 $\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma \text{ background } \dots$

- Correlated cut in ρ and θ_{acop}: ρ > 2.7 sin θ_{acop} + 1.8. (ρ = P_T of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

 $\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma \text{ background } \dots$

- Correlated cut in ρ and θ_{acop}:
 ρ > 2.7 sin θ_{acop} + 1.8. (ρ = P_T of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

 $\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma \text{ background } \dots$

- Correlated cut in ρ and θ_{acop}:
 ρ > 2.7 sin θ_{acop} + 1.8. (ρ = P_T of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

$\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma$ background ...

- Correlated cut in ρ and θ_{acop}:
 ρ > 2.7 sin θ_{acop} + 1.8. (ρ = P_T of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

 $\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma \text{ background } \dots$

- Correlated cut in ρ and θ_{acop}: ρ > 2.7 sin θ_{acop} + 1.8. (ρ = P_T of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

End-point and cross-section

Additional cuts against $\gamma\gamma$ (not needed for polarisation, due to PID requirements):

- $|\cos \theta_{missing momentum}| < 0.8$
- Low fraction of "Rest-of-Event" energy at low angles.

From now on: Different cuts for $\tilde{\tau}_1$ ($\gamma\gamma$ background), and $\tilde{\tau}_2$ (*WW* background).

Fitting the $\tilde{\tau}$ mass: Cross-section

- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as low as possible.

Fitting the $\tilde{\tau}$ mass: Cross-section

- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as low as possible.

Fitting the $\tilde{\tau}$ mass: Cross-section

- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as low as possible.

Fitting the $\tilde{\tau}$ mass: Cross-section

- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as low as possible.

Results for $\tilde{\tau}_1$

$$\Delta(N_{signal})/N_{signal} = 3.1\%$$

 $\Delta(M_{\tilde{\tau}_1})/M_{\tilde{\tau}_1} = (\Delta(\sigma)/\sigma)(\beta^2)/3(1-\beta^2) = 2.1\%$, ie.
 $\Delta(M_{\tilde{\tau}_1}) = 3.2 \text{ GeV}/c^2$

≥ 8. 300

Fitting the $\tilde{\tau}$ mass: Cross-section

- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as Results for $\tilde{\tau}_2$

$$\begin{split} &\Delta(N_{signal})/N_{signal} = 4.2\% \\ &\Delta(M_{\tilde{\tau}_2})/M_{\tilde{\tau}_2} = (\Delta(\sigma)/\sigma)(\beta^2)/3(1-\beta^2) = 2.4\%, \text{ ie.} \\ &\Delta(M_{\tilde{\tau}_2}) = 3.6 \text{ GeV}/c^2 \\ &\text{End-point + Cros-section} \rightarrow \Delta(M_{\tilde{\chi}_1^0}) = 1.7 \text{ GeV}/c^2 \end{split}$$

lviax(⊏_{jet}) [Gev]

- $E_{vis} < 120 \text{ GeV},$
- $|\cos \theta_{jet}| < 0.9$ for both jets,
- $heta_{acop} > 85^{\circ}$,
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$
- $M_{vis} > 20 \text{ GeV}/c^2$.

Efficiency 14.9 %

- $E_{vis} < 120 \text{ GeV},$
- $|\cos \theta_{jet}| < 0.9$ for both jets,
- $heta_{acop} > 85^{\circ}$,
- (*E_{jet1}* + *E_{jet2}*) sin θ_{acop} < 30 GeV.
- $M_{vis} > 20 \text{ GeV}/c^2$.

Efficiency 14.9 %

- $E_{vis} < 120 \text{ GeV},$
- $|\cos \theta_{jet}| < 0.9$ for both jets,
- $heta_{acop} > 85^{\circ}$,
- (*E_{jet1}* + *E_{jet2}*) sin θ_{acop} < 30 GeV.
- $M_{vis} > 20 \text{ GeV}/c^2$.

Efficiency 14.9 %

- $E_{vis} > 50 \text{ GeV}.$
- $\theta_{acop} < 155^{\circ}$.
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

- $E_{vis} > 50 \text{ GeV}.$
- $\theta_{acop} < 155^{\circ}$.
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

- $E_{vis} > 50 \text{ GeV}.$
- $\theta_{acop} < 155^{\circ}$.
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

- $E_{vis} > 50 \text{ GeV}.$
- $\theta_{acop} < 155^{\circ}$.
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

- $E_{vis} > 50 \text{ GeV}.$
- $\theta_{acop} < 155^{\circ}$.
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

au Polarisation: formulae and corrections

Spectrum of π :s in $\tau \to \pi^{+-}\nu_{\tau}$:

$$\frac{1}{\sigma}\frac{d\sigma}{dy_{\pi}} \sim \begin{cases} (1-P_{\tau})\log\frac{P_{\widetilde{\tau},max}}{P_{\widetilde{\tau},min}} + 2P_{\tau}y_{\pi}(\frac{1}{P_{\widetilde{\tau},min}} - \frac{1}{P_{\widetilde{\tau},max}}) & \text{for } y_{\pi} < P_{\widetilde{\tau},min} \\ (1-P_{\tau})\log\frac{P_{\widetilde{\tau},max}}{y_{\pi}} + 2P_{\tau}(1-\frac{y_{\pi}}{P_{\widetilde{\tau},max}}) & \text{for } Y_{\pi} > P_{\widetilde{\tau},min} \end{cases}$$

Analysers:

• π -cannel: P_{π}

•
$$\rho$$
-channel: $E_{\pi}/(E_{\pi}+E_{\gamma:s})$

Note the importance of the region with $Y_{\pi} < P_{\tilde{\tau},min}!$

au Polarisation: formulae and corrections

Spectrum of π :s in $\tau \to \pi^{+-}\nu_{\tau}$:

$$\frac{1}{\sigma}\frac{d\sigma}{dy_{\pi}} \sim \begin{cases} (1-P_{\tau})\log\frac{P_{\widetilde{\tau},max}}{P_{\widetilde{\tau},min}} + 2P_{\tau}y_{\pi}(\frac{1}{P_{\widetilde{\tau},min}} - \frac{1}{P_{\widetilde{\tau},max}}) & \text{for } y_{\pi} < P_{\widetilde{\tau},min} \\ (1-P_{\tau})\log\frac{P_{\widetilde{\tau},max}}{y_{\pi}} + 2P_{\tau}(1-\frac{y_{\pi}}{P_{\widetilde{\tau},max}}) & \text{for } Y_{\pi} > P_{\widetilde{\tau},min} \end{cases}$$

Analysers:

• π -cannel: P_{π}

•
$$\rho$$
-channel: $E_{\pi}/(E_{\pi}+E_{\gamma:s})$

Note the importance of the region with $Y_{\pi} < P_{\tilde{\tau}, min}!$

τ Polarisation from π : background and signal fit

Method to extract the polarisation:

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Fit \mathcal{P}_{τ} , with normalisation from cross-section determination.
- Repeat fit with randomly modified background.
- Determine effect from Δ(M_{χ̃1}⁰) and Δ(M_{τ̃1}) numerically.

 $\mathcal{P}_{ au} = 93 \pm 6 \pm 5 (ext{bkg}) \pm 3 (ext{SUSY masses})\%$

τ Polarisation from π : background and signal fit

Method to extract the polarisation:

• Fit background MC.

- Subtract this background estimate.
- Calculate efficiency correction:
- Fit \mathcal{P}_{τ} , with normalisation from cross-section determination.
- Repeat fit with randomly modified background.
- Determine effect from Δ(M_{χ̃1}) and Δ(M_{τ̃1}) numerically.

τ Polarisation from π : background and signal fit

Method to extract the polarisation:

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Fit \mathcal{P}_{τ} , with normalisation from cross-section determination.
- Repeat fit with randomly modified background.
- Determine effect from Δ(M_{χ̃1}) and Δ(M_{τ̃1}) numerically.

au Polarisation from π : background and signal fit

Method to extract the polarisation:

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Fit \mathcal{P}_{τ} , with normalisation from cross-section determination.
- Repeat fit with randomly modified background.
- Determine effect from Δ(M_{χ̃1}⁰) and Δ(M_{τ̃1}) numerically.

 $\mathcal{P}_{ au} = 93 \pm 6 \pm 5 (ext{bkg}) \pm 3 (ext{SUSY masses})\%$

au Polarisation from π : background and signal fit

Method to extract the polarisation:

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Fit *P_τ*, with normalisation from cross-section determination.
- Repeat fit with randomly modified background.
- Determine effect from Δ(M_{χ̃1}⁰) and Δ(M_{τ̃1}) numerically.

 $\mathcal{P}_{ au}=$ 93 \pm 6 \pm 5(bkg) \pm 3(SUSY masses)%

au Polarisation from π : background and signal fit

Method to extract the polarisation:

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Fit *P_τ*, with normalisation from cross-section determination.
- Repeat fit with randomly modified background.
- Determine effect from Δ(M_{χ̃1}⁰) and Δ(M_{τ̃1}) numerically.

au Polarisation from π : background and signal fit

Method to extract the polarisation:

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Fit *P_τ*, with normalisation from cross-section determination.
- Repeat fit with randomly modified background.
- Determine effect from Δ(M_{χ̃1}) and Δ(M_{τ̃1}) numerically.

 $\mathcal{P}_{ au} =$ 93 \pm 6 \pm 5(bkg) \pm 3(SUSY masses)%

τ Polarisation from ρ : background and signal fit

Method to extract the polarisation:

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: *R* is not sensitive to beam spectrum)
- Fit for \mathcal{P}_{τ} for 0.1 < R < 0.85

$\mathcal{P}_{ au} = 86.0 \pm 5\%$

τ Polarisation from ρ : background and signal fit

Method to extract the polarisation:

• Fit background MC.

- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: *R* is not sensitive to beam spectrum)
- Fit for \mathcal{P}_{τ} for 0.1 < R < 0.85

$\mathcal{P}_{ au} = 86.0 \pm 5\%$

τ Polarisation from ρ : background and signal fit

Method to extract the polarisation:

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: *R* is not sensitive to beam spectrum)
- Fit for \mathcal{P}_{τ} for 0.1 < R < 0.85

$\mathcal{P}_{ au} = 86.0 \pm 5\%$

τ Polarisation from ρ : background and signal fit

Method to extract the polarisation:

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: *R* is not sensitive to beam spectrum)

τ Polarisation from ρ : background and signal fit

Method to extract the polarisation:

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: *R* is not sensitive to beam spectrum)

τ Polarisation from ρ : background and signal fit

Method to extract the polarisation:

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: *R* is not sensitive to beam spectrum)

τ Polarisation from ρ : background and signal fit

Method to extract the polarisation:

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: *R* is not sensitive to beam spectrum)

τ Polarisation from ρ : background and signal fit

Method to extract the polarisation:

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: *R* is not sensitive to beam spectrum)

• Fit for \mathcal{P}_{τ} for 0.1 < R < 0.85

 $\mathcal{P}_\tau = 86.0 \pm 5\%$

τ Polarisation from π : formulae and corrections

Correct for the spread in *E*_{beam}:

- Plot spectrum (at generator level), with and without beam-strahlung and ISR shows difference.
- Parametrise actual spectrum for P_τ = ±1 (= F(E,±1))
- True spectrum will be $F(E, \mathcal{P}_{\tau}) = \frac{1+\mathcal{P}_{\tau}}{2}F(E, +1) + \frac{1-\mathcal{P}_{\tau}}{2}F(E, -1)$

τ Polarisation from π : formulae and corrections

Correct for the spread in *E*_{beam}:

- Plot spectrum (at generator level), with and without beam-strahlung and ISR shows difference.
- Parametrise actual spectrum for P_τ = ±1 (= F(E, ±1))
- True spectrum will be $F(E, \mathcal{P}_{\tau}) = \frac{1+\mathcal{P}_{\tau}}{2}F(E, +1) + \frac{1-\mathcal{P}_{\tau}}{2}F(E, -1)$

τ Polarisation from π : formulae and corrections

Correct for the spread in *E*_{beam}:

- Plot spectrum (at generator level), with and without beam-strahlung and ISR shows difference.
- Parametrise actual spectrum for P_τ = ±1 (= F(E, ±1))
- True spectrum will be $F(E, \mathcal{P}_{\tau}) = \frac{1+\mathcal{P}_{\tau}}{2}F(E, +1) + \frac{1-\mathcal{P}_{\tau}}{2}F(E, -1)$

The τ Polarisation

τ Polarisation from π : formulae and corrections

Correct for the spread in *E*_{beam}:

- Plot spectrum (at generator level), with and without beam-strahlung and ISR shows difference.
- Parametrise actual spectrum for P_τ = ±1 (= F(E, ±1))
- True spectrum will be $F(E, \mathcal{P}_{\tau}) = \frac{1+\mathcal{P}_{\tau}}{2}F(E, +1) + \frac{1-\mathcal{P}_{\tau}}{2}F(E, -1)$

τ Polarisation from π : Select the signal process

Extract the $\tau \rightarrow \pi^{+-}\nu_{\tau}$ signal.

- The events should pass the anti- $\gamma\gamma$ cut.
- $E_{vis} < 90 \text{ GeV}.$
- No jet with E > 60 GeV
- At least one jets should contain a single particle.
- The single particle should have a π -id (both calorimetric and dE/dx).

τ Polarisation from π : Select the signal process

Extract the $\tau \rightarrow \pi^{+-}\nu_{\tau}$ signal.

- The events should pass the anti-γγ cut.
- *E_{vis}* < 90 GeV.
- No jet with E > 60 GeV
- At least one jets should contain a single particle.
- The single particle should have a π -id (both calorimetric and dE/dx).

τ Polarisation from ρ : Select the signal process

Extract the $\tau \rightarrow \rho^{+-}\nu_{\tau}$ signal.

- The events should pass the anti- $\gamma\gamma$ cut.
- $E_{vis} < 90 \text{ GeV}.$
- No jet with E > 43 GeV
- Tighter ρ cut: $\rho > 3.5 \sin \theta_{acop} + 2$.
- At least one jets should contain one charged particle, and at least two neutrals.
- The single particle should have a π -id (dE/dx only).
- Mass of this jet close to $M_{\rho}:M_{jet} \in [0.4, 1.1] \text{GeV}/c^2$.

τ Polarisation from ρ : Select the signal process

Extract the $\tau \rightarrow \rho^{+-}\nu_{\tau}$ signal.

- The events should pass the anti- $\gamma\gamma$ cut.
- $E_{vis} < 90 \, {\rm GeV}$.
- No jet with E > 43 GeV
- Tighter ρ cut: $\rho > 3.5 \sin \theta_{acop} + 2$.
- At least one jets should contain one charged particle, and at least two neutrals.
- The single particle should have a π -id (dE/dx only).

• Mass of this jet close to M_{ρ} : $M_{jet} \in [0.4, 1.1]$ GeV/ c^2 .

τ Polarisation from ρ : Select the signal process

Extract the $\tau \rightarrow \rho^{+-}\nu_{\tau}$ signal.

- The events should pass the anti- $\gamma\gamma$ cut.
- $E_{vis} < 90 \, {\rm GeV}$.
- No jet with E > 43 GeV
- Tighter ρ cut: $\rho > 3.5 \sin \theta_{acop} + 2$.
- At least one jets should contain one charged particle, and at least two neutrals.
- The single particle should have a π -id (dE/dx only).
- Mass of this jet close to $M_{\rho}:M_{jet} \in [0.4, 1.1] \text{GeV}/c^2$.

The τ Polarisation

τ Polarisation from ρ : Select the signal process

The τ Polarisation

Near Degenerate ẽ

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

Near Degenerate ẽ

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

- The ẽ signal was extracted from the same sample as was used for the SPS1a' τ̃study, using the same cuts except
 - Demand exactly two well identified electrons.
 - Reverse the τ̃anti-SUSY background cut
 - Some cuts could be loosened
- Almost background-free !

Near Degenerate ẽ

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

- The ẽ signal was extracted from the same sample as was used for the SPS1a' τ̃study, using the same cuts except
 - Demand exactly two well identified electrons.
 - Reverse the τ̃ anti-SUSY background cut
 - Some cuts could be loosened
- Almost background-free !

Near Degenerate ẽ

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

For the signal:

- Generate (with Whizard 1.95) the modified model.
- Apply the kinematic cuts used for the full simulation analysis.
- Scale down the over-all event-weight so that the efficiency agrees with the full simulation.