# SUSY Benchmark Studies for the CLIC CDR

A. Münnich



8.2.2012, LCForum DESY

#### Outline



- Introduction
  - CLIC Conditions and Detectors
  - Background Suppression
- Benchmark Studies
  - Heavy Higgs
  - Squarks
  - Sleptons
  - Chargino/Neutralino



# **CLIC physics and detector CDR**



CLIC provides the potential for e+e- collisions up to  $\sqrt{s}$  = 3 TeV:

Challenging machine environment  $\rightarrow$  detailed detector studies are needed

CLIC physics and detector CDR:

- Physics potential
- Demonstrate that the physics can be measured at CLIC

Release of the CDR text (20.12.2011): https://edms.cern.ch/document/1177771



Review in October 2011: https://indico.cern.ch/conferenceTimeTable.py?confld=146521

#### **Conditions at CLIC**



|                                       | CLIC at 3 TeV        |                        |
|---------------------------------------|----------------------|------------------------|
| L (cm <sup>-2</sup> s <sup>-1</sup> ) | 5.9×10 <sup>34</sup> |                        |
| BX separation                         | 0.5 ns               | Crives timing          |
| #BX / train                           | 312                  | requirements           |
| Train duration (ns)                   | 156                  | for CLIC detector      |
| Rep. rate                             | 50 Hz                |                        |
| σ <sub>x</sub> / σ <sub>y</sub> (nm)  | ≈ 45 / 1             | vory small beam size   |
| σ <sub>z</sub> (μm)                   | 44                   | very sindli bedin size |



## **Background Suppression I**

Triggerless readout of full bunch train:



- 1) Identify t<sub>0</sub> of physics event in bunch train
  - Define reconstruction window
  - All hits and tracks in this window are passed to the reconstruction
     → Physics objects (PFOs) with

precise  $p_{\rm T}$  and cluster time information

- 2) Apply cluster-based timing cuts
  - Cuts depend on particle-type (charged, neutral and photons), *p*<sub>T</sub> and detector region
  - ightarrow Protects physics objects at high  $p_{\rm T}$





### **Background Suppression II**



#### $e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t}$ (8 jet final state)





#### **1.2 TeV** background in the reconstruction window

#### **100 GeV** background after (tight) timing cuts

for 60 BX of  $\gamma\gamma \rightarrow$  hadron background

#### **Detector Models**

Based on validated ILC designs, adapted and optimized to the CLIC conditions:

- Denser HCAL in the barrel (Tungsten, 7.5  $\lambda$ )
- Redesign of the vertex and forward detectors (backgrounds)





#### **Two SUSY scenarios:**

- Referred to as model I and model II
- Chosen to illustrate detector performance
- Emphasis on high-mass states for the 3 TeV case

#### Simulation

All benchmark channels based on

- Full Geant4 simulation including 60 BX  $\gamma\gamma \rightarrow$  hadron background
- Integrated luminosity of 2 ab<sup>-1</sup>
- Reconstruction based on Particle Flow (PFA)

# Heavy Higgs: Production (CLIC\_ILD)



Study done in both SUSY models

- Model I: m(A) = 902 GeV and
- Model II: m(A) = 742 GeV

with neutral and charged Higgs nearly mass degenerate.

Production and predominant decay:

$$e^+e^- 
ightarrow H^0 A^0 
ightarrow b\overline{b}b\overline{b}$$
  
 $e^+e^- 
ightarrow H^+ H^- 
ightarrow t\overline{b}b\overline{t}$ 

#### Key detector performance aspects

- Flavour tagging for high-energetic jets
- Invariant mass reconstruction of high mass states in a high multiplicity environment
- Identification of boosted top quarks from jet structure

## **Heavy Higgs: Results**

 $e^+e^- \rightarrow b\overline{b}b\overline{b}$ 



 $e^+e^- 
ightarrow t\overline{b}b\overline{t}$ 



Masses and widths determined from fit with the sum of two BW, folded with a Gaussian resolution function

## **Heavy Higgs: Results**









| SUSY model I |      |       | SUSY | model II |
|--------------|------|-------|------|----------|
| State        | Mass | Width | Mass | Width    |
|              | [%]  | [%]   | [%]  | [%]      |
| A/H          | 0.3  | 31    | 0.2  | 17       |
| $H^{\pm}$    | 0.3  | 27    | 0.3  | 23       |

Masses and widths determined from fit with the sum of two BW, folded with a Gaussian resolution function

## Squarks: Production (CLIC\_ILD)



SUSY model I:  $m_{\tilde{u}_{R}} = m_{\tilde{c}_{R}} = 1125.7 \text{ GeV}, m_{\tilde{d}_{R}} = m_{\tilde{s}_{R}} = 1116.1 \text{ GeV}$ 

|               | Process                                                                                                       | Cross Section  |
|---------------|---------------------------------------------------------------------------------------------------------------|----------------|
| Signal        | $e^+e^-  ightarrow 	ilde{q}_{ m R} 	ilde{q}_{ m R}  ightarrow q \overline{q} 	ilde{\chi}_1^0 	ilde{\chi}_1^0$ | 1.47 fb        |
|               | $e^+e^-  ightarrow q \overline{q}  u \overline{ u}$                                                           | $\sim$ 1500 fb |
| SM background | $oldsymbol{e}^+oldsymbol{e}^- 	o oldsymbol{q} \overline{oldsymbol{q}} oldsymbol{e}^\pm  u$                    | $\sim$ 5300 fb |
|               | ${m 	heta}^+ {m 	heta}^- 	o 	au^+ 	au^-  u \overline{ u}$                                                     | $\sim$ 130 fb  |

#### Key detector performance aspects

 Jet energy and missing energy reconstruction for high energy jets in a simple topology

#### **Squarks: Results**



Mass determination with template fit and stat. errors from toy MC

Modified invariant mass:



| Observable                                           | Result                                                                                                   | Generator value       |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|
| Averaged right-squark mass<br>Combined cross section | $\begin{array}{c} \text{1127.9 GeV} \pm \text{5.9 GeV} \\ \text{1.51 fb} \pm \text{0.07 fb} \end{array}$ | 1123.7 GeV<br>1.47 fb |

#### **Squarks: Results**



Mass determination with template fit and stat. errors from toy MC

Modified invariant mass:



# Sleptons: Production (CLIC\_ILD)



 $\begin{array}{l} {\rm SUSY\ model\ II:} \\ {\rm m}(\tilde{e}_{\rm R}) = m(\tilde{\mu}_{\rm R}) = {\rm 1010.8\ GeV} \\ {\rm m}(\tilde{e}_{\rm L}) = m(\tilde{\mu}_{\rm L}) = {\rm 1100.4\ GeV} \end{array}$ 

| Process                                                       | $\sigma$ | Decay Mode                                                | $\sigma 	imes \textit{BR}$ | $\sigma 	imes \textit{BR}$ (ee4Q) |
|---------------------------------------------------------------|----------|-----------------------------------------------------------|----------------------------|-----------------------------------|
|                                                               | (fb)     |                                                           | (fb)                       | (fb)                              |
| $e^+e^-  ightarrow {	ilde \mu}^+_{\sf R} {	ilde \mu}^{\sf R}$ | 0.72     | $\mu^+\mu^-	ilde{\chi}^0_1	ilde{\chi}^0_1$                | 0.72                       |                                   |
| $e^+e^-  ightarrow {	ilde e}^+_{\sf R} {	ilde e}^{\sf R}$     | 6.05     | $e^+e^-	ilde{\chi}^0_1	ilde{\chi}^0_1$                    | 6.05                       |                                   |
| $e^+e^-  ightarrow {	ilde e}^+_{\sf L} {	ilde e}^{\sf L}$     | 3.07     | ${	ilde \chi}_1^0 {	ilde \chi}_1^0 e^+ e^- (h/Z^0 h/Z^0)$ | 0.25                       | 0.16                              |
| $e^+e^-  ightarrow 	ilde{ u}_e 	ilde{ u}_e$                   | 13.74    | $	ilde{\chi}^0_1	ilde{\chi}^0_1 e^+ e^- W^+ W^-$          | 4.30                       | 1.82                              |

#### Key detector performance aspects

- Reconstruction and identification of high energy leptons
- Energy resolution for high energy electrons and muons in two lepton plus jets final states
- Boson mass resolution

#### **Sleptons: Results**



Mass extraction from kinematic edge of lepton energy, background subtracted, fit includes beam energy spectrum



#### **Sleptons: Results**



Mass extraction from kinematic edge of lepton energy, background subtracted, fit includes beam energy spectrum



# Chargino/Neutralino: Production (CLIC\_SiD)



SUSY model II:  $m(\chi_1^{\pm})=643 \text{ GeV}, \quad m(\chi_1^0)=340 \text{ GeV}, \quad m(\chi_2^0)=643 \text{ GeV}$   $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow W^+ \tilde{\chi}_1^0 W^- \tilde{\chi}_1^0$  $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow h^0(Z^0) \tilde{\chi}_1^0 h^0(Z^0) \tilde{\chi}_1^0$ 

| Туре       | Process                                                                                                                                                                                                               | Cross section [fb]        | Referenced with        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|
| Signal     | ${ar{\chi}^+_1 	ilde{\chi}^1} \over {ar{\chi}^0_2 	ilde{\chi}^0_2}$                                                                                                                                                   | 10.6<br>3.3               | Chargino<br>Neutralino |
| Background | $\begin{array}{c} \tilde{\chi}_2^+ \tilde{\chi}_2^- \\ \tilde{\chi}_1^+ \tilde{\chi}_2^- \\ \tilde{\chi}_1^+ \tilde{\chi}_1^- \nu \overline{\nu} \\ \tilde{\chi}_2^0 \tilde{\chi}_2^0 \nu \overline{\nu} \end{array}$ | 10.5<br>0.8<br>1.4<br>1.2 | SUSY                   |
|            | qqqq <i>vv</i><br>qqh <sup>0</sup> vv<br>h <sup>0</sup> h <sup>0</sup> vv                                                                                                                                             | 95.4<br>3.1<br>0.6        | SM                     |

#### Key detector performance aspects

- Jet energy and missing energy reco in high energy decays
- Di-Jet mass reco and separation of hadronic Z, W and h decays

# **Chargino/Neutralino: Analysis**



Background rejection with a Boosted Decision Tree



Application of timing cuts important in addition to jet reco to recover correct mass spectrum.

- Efficiency Charginos: 33%
- Efficiency Neutralinos: 25%
- Purity both: 56%



# **Chargino/Neutralino: Results**



Mass and cross section from template (fully simulated) and least squares fits



| Parameter 1              | Uncertainty | Parameter 2                                 | Uncertainty |
|--------------------------|-------------|---------------------------------------------|-------------|
| $M(	ilde{\chi}_1^{\pm})$ | 6.3 GeV     | $\sigma(	ilde{\chi}_1^+	ilde{\chi}_1^-)$    | 2.2%        |
| $M(\tilde{\chi}_1^0)$    | 3.0 GeV     | $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$  | 1.8%        |
| $M(	ilde{\chi}_2^0)$     | 7.3 GeV     | $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ | 2.9%        |

consistent results with least squares fit

#### **Systematic Uncertainties**

- So far only statistical uncertainties
- Work ongoing on systematic effects

One example: Luminosity spectrum  $\rightarrow$  Introduce uncertainties of 1% change of average  $\sqrt{s}$  in luminosity spectrum:

- Squarks: negligible
- Sleptons: mass changes negligible, statistical errors dominant except for  $\tilde{e}_{\rm R}^+ \tilde{e}_{\rm R}^- \rightarrow e^+ e^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$  with the largest cross section
- Charginos:
  - cross sections: similar size as statistical uncertainty
  - mass shift of typically half of the statistical uncertainty









- $\gamma\gamma \rightarrow$  hadron background can be sufficiently reduced by timing cuts at PFO level
- Masses and cross sections have been measured with good statistical accuracy
- Systematic uncertainties are on the way, first tests very promising
- Luminosity spectrum shape does not harm physics results



- Heavy Higgs LCD-Note-2010-006
- Squarks LCD-2011-027
- Sleptons LCD-Note-2011-018
- Chargino/Neutralino LCD-Note-2011-037

Signatories to support the physics case and R&D towards a future linear collider based on CLIC technology are currently collected here:

https://indico.cern.ch/conferenceDisplay.py?confld=136364

NO work or commitment involved!

# BACKUP



| Process                   | Decay mode                                                                         | SUSY<br>model | Observable    | Stat.<br>error |
|---------------------------|------------------------------------------------------------------------------------|---------------|---------------|----------------|
|                           | $HA \rightarrow b\overline{b}b\overline{b}$                                        | I             | Mass<br>Width | 0.3%<br>31%    |
| Heavy Higgs<br>production |                                                                                    | II            | Mass<br>Width | 0.2%<br>17%    |
|                           | $H^+H^-  ightarrow t\overline{b}b\overline{t}$ .                                   | I             | Mass<br>Width | 0.3%<br>27%    |
|                           |                                                                                    | II            | Mass<br>Width | 0.3%<br>23%    |
| Production of squarks     | $	ilde{q}_{ m R}	ilde{q}_{ m R} 	o q \overline{q} 	ilde{\chi}_1^0 	ilde{\chi}_1^0$ | I             | Mass $\sigma$ | 0.52%<br>4.6%  |



| Process                  | Decay mode                                                                                                                                                                                                     | SUSY<br>model | Observable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stat.<br>error       |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                          | $\tilde{\mu}^+_{R}\tilde{\mu}^{R} \rightarrow \mu^+\mu^-\tilde{\chi}^0_1\tilde{\chi}^0_1$                                                                                                                      |               | $\sigma \ 	ilde{\ell} \ { m mass} \ 	ilde{\ell} \ { m mass} \ 	ilde{\chi}_1^0 \ { m mass}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.8%<br>0.6%<br>1.9% |
| Sleptons production      | $	ilde{e}^+_{ m R} 	ilde{e}^{ m R}  ightarrow e^+ e^- 	ilde{\chi}^0_1 	ilde{\chi}^0_1$                                                                                                                         | II            | $\sigma \ 	ilde{\ell} 	ext{ mass } \ 	ilde{\ell}_1 	ext{ mass } \ 	ilde{\chi}_1^0 	ext{ mass } \ 	i$ | 0.8%<br>0.3%<br>1.0% |
|                          | $ \begin{array}{l} \tilde{e}^+_L \tilde{e}^L \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1 e^+ e^- hh \\ \tilde{e}^+_L \tilde{e}^L \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1 e^+ e^- Z^0 Z^0 \end{array} $ |               | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.2%                 |
|                          | $	ilde{ u}_{e}	ilde{ u}_{e} ightarrow 	ilde{\chi}_{1}^{0}	ilde{\chi}_{1}^{0}e^{+}e^{-}W^{+}W^{-}$                                                                                                              |               | $\sigma \\ 	ilde{\ell} 	ext{ mass } \\ 	ilde{\chi}_1^\pm 	ext{ mass }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4%<br>0.4%<br>0.6% |
| Chargino<br>and          | $\tilde{\chi}^+_1\tilde{\chi}^1\to\tilde{\chi}^0_1\tilde{\chi}^0_1W^+W^-$                                                                                                                                      | Ш             | ${	ilde \chi_1^\pm}$ mass $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1%<br>2.4%         |
| neutralino<br>production | $\tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow h^0/Z^0 h^0/Z^0 \tilde{\chi}_1^0 \tilde{\chi}_1^0$                                                                                                              |               | $	ilde{\chi}^0_2$ mass $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5%<br>3.2%         |

#### Polarisation



Gaugino mass precision as a function of luminosity



The horizontal lines represent the achieved mass precision with no polarization assuming  $2 \text{ ab}^{-1}$  of integrated luminosity.



#### SUSY model I:

GUT scale parameters:  $M_1 = 780 \text{ GeV},$   $M_2 = 940 \text{ GeV},$   $M_3 = 540 \text{ GeV},$   $A_0 = -750 \text{ GeV},$   $m_0 = 303 \text{ GeV},$   $\tan \beta = 24$ and  $\mu > 0$ 

#### SUSY model II:

mSUGRA parameters:  $m_{1/2} = 800 \text{ GeV}.$   $A_0 = 0,$   $m_0 = 966 \text{ GeV},$   $\tan \beta = 51$ and  $\mu > 0$ 

#### W and Z Separation



35

30

25

20

15

10

5

110

From chargino decays to W and Z (different SUSY model)  $e^+e^- 
ightarrow ilde{\chi}^+_1 ilde{\chi}^-_1 
ightarrow W^+ ilde{\chi}^0_1 W^- ilde{\chi}^0_1$  $e^+e^- 
ightarrow ilde{\chi}^0_2 ilde{\chi}^0_2 
ightarrow Z^0 ilde{\chi}^0_1 Z^0 ilde{\chi}^0_1$ 





<u></u> Эро.о2 Ир Beamstrahlung → important energy losses right at the interaction point. 0.015 3 TeV **Full luminosity:** √s  $5.9 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ energy spectrum 0.01 Of which in the 1% most energetic part:  $2.0 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ 0.005 Most physics processes are studied well above production threshold => profit from full luminosity 0







| Region                   | p <sub>T</sub> range                                    | Time cut          |  |
|--------------------------|---------------------------------------------------------|-------------------|--|
|                          | Photons                                                 |                   |  |
| Central                  | $1.0\mathrm{GeV} \le p_\mathrm{T} < 4.0\mathrm{GeV}$    | <i>t</i> < 2.0 ns |  |
| $ \cos(	heta)  \le 0.95$ | $0.2\mathrm{GeV} \le p_\mathrm{T} < 1.0\mathrm{GeV}$    | <i>t</i> < 1.0 ns |  |
| Forward                  | $1.0{ m GeV} \le p_{ m T} < 4.0{ m GeV}$                | <i>t</i> < 2.0 ns |  |
| $ \cos(	heta)  > 0.95$   | $0.2\mathrm{GeV} \le p_\mathrm{T} < 1.0\mathrm{GeV}$    | <i>t</i> < 1.0 ns |  |
|                          | Neutral hadrons                                         |                   |  |
| Central                  | $1.0{ m GeV} \le E_{ m T} < 8.0{ m GeV}$                | <i>t</i> < 2.5 ns |  |
| $ \cos(	heta)  \le 0.95$ | $0.5\mathrm{GeV} \leq E_\mathrm{T} < 1.0\mathrm{GeV}$   | <i>t</i> < 1.5 ns |  |
| Forward                  | $1.0\mathrm{GeV} \leq E_\mathrm{T} < 8.0\mathrm{GeV}$   | <i>t</i> < 1.5 ns |  |
| $ \cos(	heta)  > 0.95$   | $0.5\text{GeV} \leq \textit{E}_{\rm T} < 1.0\text{GeV}$ | <i>t</i> < 1.0 ns |  |
| Charged particles        |                                                         |                   |  |
| All                      | $1.0  {\rm GeV} \le p_{\rm T} < 4.0  {\rm GeV}$         | <i>t</i> < 2.0 ns |  |
|                          | $0{ m GeV} \le p_{ m T} < 1.0{ m GeV}$                  | <i>t</i> < 1.0 ns |  |

### SUSY models I

Two SUSY scenarios with non-unified gaugino masses:

- Chosen to illustrate detector performance
- Emphasis on high-mass states for the 3 TeV case



#### SUSY models II

Two SUSY scenarios with non-unified gaugino masses:

- Chosen to illustrate detector performance
- Emphasis on high-mass states for the 3 TeV case

