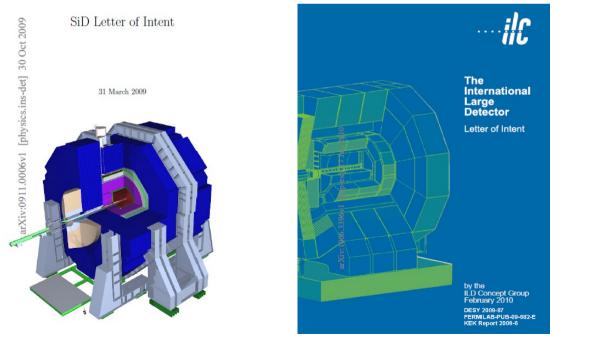
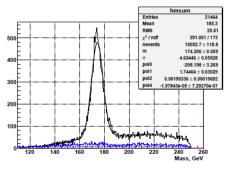

BSM studies from the LoIs and for the ILC TDR

LCForum February 7-9, 2012 J.List (DESY)



Today's Menue


- Introduction
- Beyond SM in the ILD & SiD Letters of Intent
 - benchmark: NUHM "Point 5"
 - additional studies
 - lessons from the LoI studies
- Conclusions & Outlook

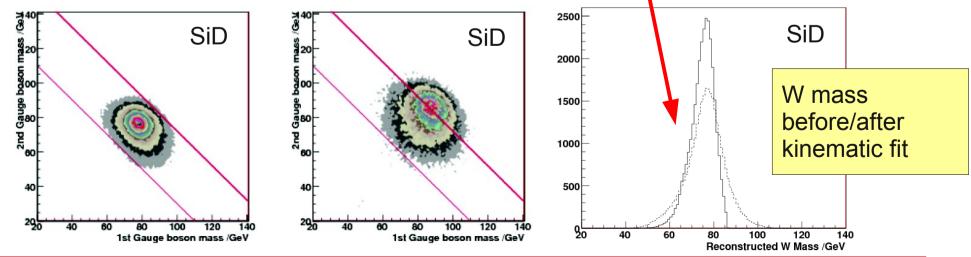
Introduction

- Letters of Intent (LoIs) for detector concepts at the ILC:
 - conceptual description of detectors, employed technologies and alternatives
 - performance studies (resolutions, efficiencies, robustness, ...)
 - benchmarks analyses: chosen to challenge the detector concepts with the experimentally most difficult final states

Letter of Intent from the Fourth Detector ("4th") Collaboration at the International Linear Collider

 $t \; {\rm quark} \; {\rm mass} \; {\rm reconstructed} \; {\rm with} \; {\rm standard} \; {\rm model} \; {\rm backgrounds}.$

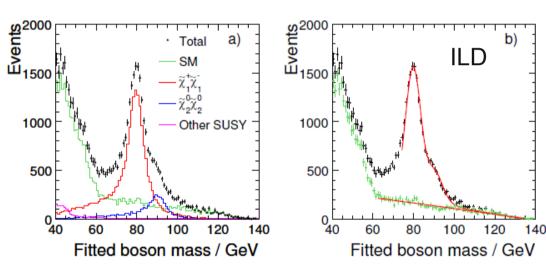
J.List


Introduction

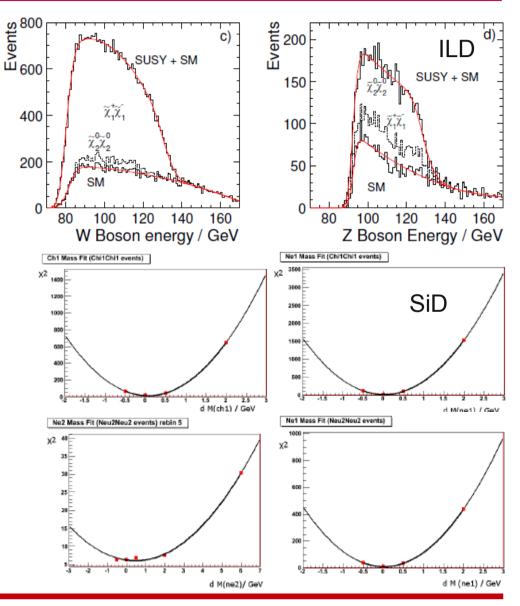
- Lols published in 2009
- reviewed by group of international experts (IDAG)
- ILD and SiD concepts were encouraged to continue their work towards a technical design (DBD), to accompany the ILC TDR due in 2012
- again, DBD will contain benchmarks to challenge detectors
 - => if performance of detailled simulation studies is similar to old fast simulation studies in the "difficult cases", this validates the TESLA, NLC, JLC studies "a posteriori"

BSM in Lols: Overview

- benchmarks:
 - NUHM "Point 5"
 - strong EWSB : WW / ZZ
- beyond benchmarks:
 - $\widetilde{b} \rightarrow b \chi^0_1$
 - non-pointing photons from $\chi^0 \to \gamma \ \widetilde{G}$
 - heavy gauge bosons in Little Higgs Models
 - $\tilde{\tau}$ with small mass difference to χ^0 and $\chi^0_2 \rightarrow \mu \mu \chi^0_1 \rightarrow M.Berggren, Wednesday 14:30$
 - radiative WIMP production \rightarrow *C.Bartels, Thursday* 14:00

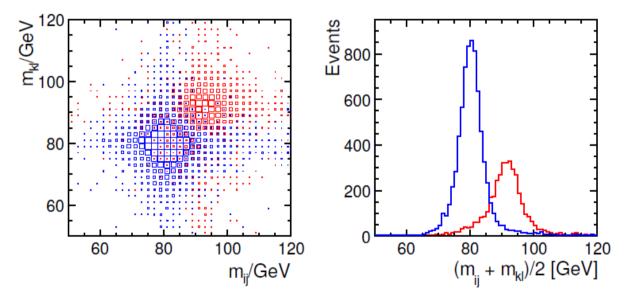

- non-universal soft SUSY-breaking contributions to the Higgs masses
- $M_0 = 206 \text{ GeV}, M_{\frac{1}{2}} = 293 \text{ GeV}, \tan\beta = 10, A_0 = 0, \mu = 375 \text{ GeV}$
- => $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ mass degenerate (216.5 GeV), decay into $W^{\pm}\tilde{\chi}_1^0$ and $Z\tilde{\chi}_1^0$, respectively (M_{LSP} = 115.7 GeV)
- detector challenge: fully hadronic decay mode 4j + missing 4-mom.
- due to the 2 escaping LSPs, impact kinematic fitting is limited
 => this tests jet energy reconstruction in particle flow calorimetry

J.List


Point 5: Cross-sections

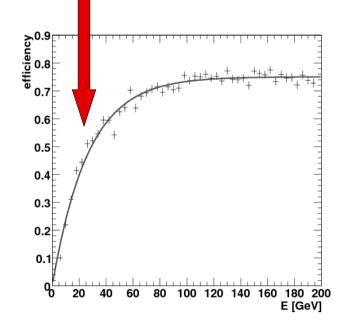
- ...and now with backgrounds (SM + SUSY!)
- separate $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ according to di-jet masses
- subtract background measure cross-section
 - event counting (SiD): δσ = 1% ($\tilde{\chi}_1^{\pm}$)/ 4% ($\tilde{\chi}_2^0$)
 - 1D di-jet mass fitting (ILD): $\delta \sigma$ = 1% ($\tilde{\chi}_1^{\pm}$)/ 3% ($\tilde{\chi}_2^{0}$)
 - 2D di-jet mass template fitting (ILD): $\delta \sigma$ =0.6% ($\tilde{\chi}_1^{\pm}$)/ 2% ($\tilde{\chi}_2^0$)
- => analysis technique matters!
- don't forget ZZ $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow qqll \ \tilde{\chi}_1^0 \tilde{\chi}_1^0$: lower statistics, but
 - much less background (no chargino bkg!)
 - excellent mass/energy resolution from leptonic Z!

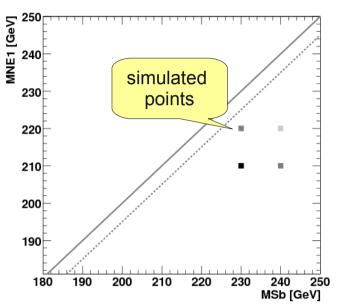
Point 5: Masses


- fitting the edges of the W/Z energy spectrum:
 => edge positions to 0.2....0.7 GeV
- using these to determine all three masses simultaneously (ILD): $\delta M(\tilde{\chi}_1^0) = 0.8 \text{ GeV}$ $\delta M(\tilde{\chi}_1^{\pm}) = 0.9 \text{ GeV}$ $\delta M(\tilde{\chi}_2^0) = 2.4 \text{ GeV}$
- correlations are substancial: if other 2 masses were known (SiD) $\delta M(\tilde{\chi}_1^0) = 0.2 \text{ GeV}$ $\delta M(\tilde{\chi}_1^{\pm}) = 0.5 \text{ GeV}$ $\delta M(\tilde{\chi}_2^0) = 1.0 \text{ GeV}$
- kinematic fitting (constraining the vector boson masses) still helps: w/o kin. fit, mass resolution is worse by 0.5...1.1 GeV !

Strong EWSB

ILD Lol

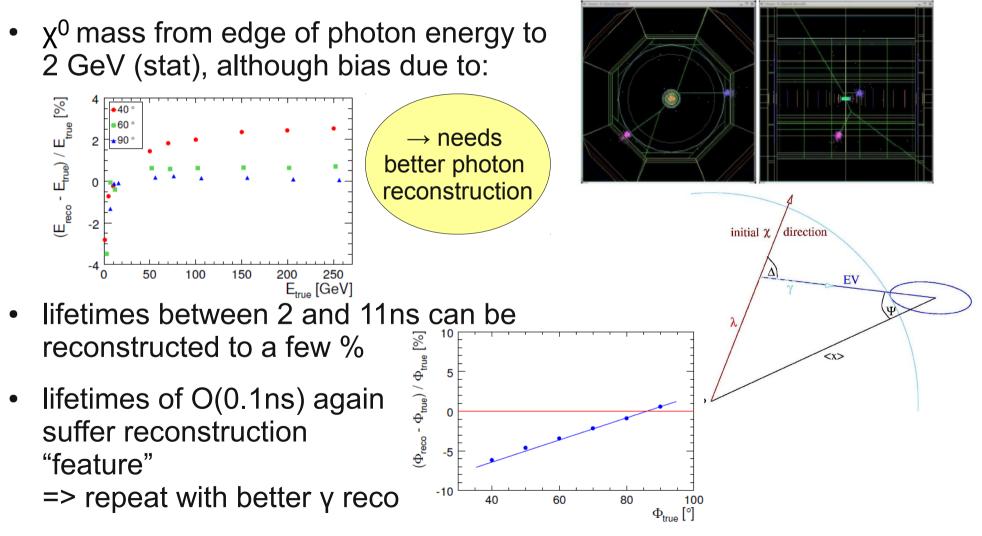

- test W⁺W⁻ \rightarrow W⁺W⁻ and W⁺W⁻ \rightarrow ZZ vertices by $e^+e^- \rightarrow \nu_e \overline{\nu}_e q \overline{q} q \overline{q}$ at 1 TeV (1ab⁻¹, P=(0.3,-0.8))
- di-jet mass reconstruction:

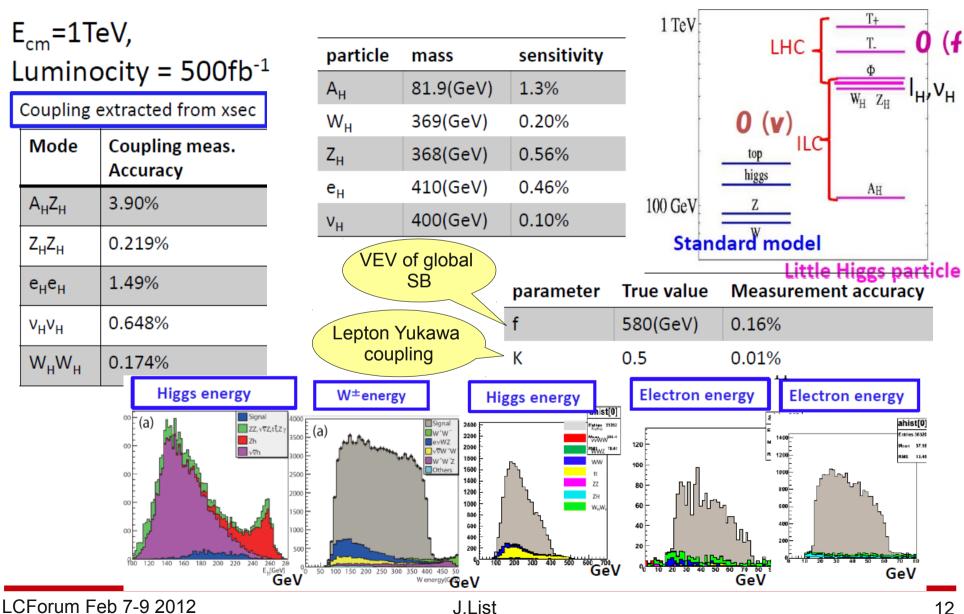


- Quartic gauge couplings (SM=0) can be limited to:
 - $-1.38 < \alpha_4 < +1.10 \qquad -0.92 < \alpha_5 < +0.77$

 $b \rightarrow b \chi^{0}_{1}$

- **b** is NLSP with small mass difference
- b mass determines cross-section
- mass splitting determines jet energy
 → test b-tagging with low jet energies!




- further needs excellent coverage of forward region to veto γγ-events
- with 500fb⁻¹ at 500 GeV: between10 and 2σ (at kinematic edge)

GMSB: Non-pointing photons N. Wattimena, desy-thesis-10-006

• $\chi^0 \rightarrow \gamma \ \widetilde{G}$: reconstruct lifetime from photon direction \rightarrow *cluster shape!*

Little Higgs with T-Parity M.Asano, K.Fujii, E.Kato et al, LCWS11

Conclusions of LoI studies

in nearly all studied cases, the physics performance from full simulation is very similar to older results obtained by fast simulation
 => this validates a posteriori the assumptions made on the

detector capabilities!

- between ILD and SiD, most differences in physics performance were tracked down to the reconstruction algorithms and the analyses
 if you keep it too simple, you get a too pessimistic answer
- systematic uncertainties: accelerator properties often play a role (beam energy spectrum, polarisation uncertainty...)
 => watch not only the detector, but mind also the machine!
- decay channels chosen to be experimentally difficult: often only looked at fully hadronic cases, (semi-) leptonic ignored!

Outlook: towards TDR / DBD

- DBD: few detector specific benchmarks at 1TeV
- TDR physics volume:
 - http://newsline.linearcollider.org/2011/11/17/articulating-the-physics-case-for-the-ilc/
 - review the ILC physics case in view of LHC
 - no differentiation between detector concepts
 - not necessarily full simulation results: fast simulation and cross-section level studies equally welcome!
 publicly available fast simulation of ILD based on SGV→ *talk by M.Berggren Thu 14:20*
 - TDR physics volume has restricted length
 - the notes and the review paper resulting of this workshop could be important input and references!