

Measuring the asymmetries of the top quark at the ILC

Philippe Doublet R. P., François Richard + Thibault Frisson & Jérémy Rouene

Plan

1. Motivation

2. Measurement method

3. Efficiencies

4. Results

The top quark and flavor hierarchy Geography in Randall-Sundrum models Top to Z couplings

1. MOTIVATION

The top quark and flavor hierarchy

- Top quark : no hadronisation → clean and detailed observations
- Redo measurements of A_{LR} and A_{FB} with the top

- Higgs on IR brane for gauge hierarchy problem
- SM fermions have different locations along the 5th dimension
- Overlaps leptons Higgs in the 5th dimension generate good Yukawa couplings with O(1) localisation parameters

LC Forum, Feb. 2012

R.P./Philippe Doublet - LAL

Top to Z couplings

• Several RS models predict modified left $g_z(t_L)$ and right $g_z(t_R)$ top couplings to Z (Z-Z_{KK} mixing, ...)

Observables Top quark cross section Measurement with the ILD detector Reconstruction within the ILD framework Requirements

2. MEASUREMENT METHOD

Observables

•
$$\sigma(\text{tt}), A_{\text{LR}} \text{ and } A_{\text{FB}} :$$
 $A_{\text{LR}} = \frac{N_{top}(e_L^-) - N_{top}(e_R^-)}{N_{top}(e_L^-) + N_{top}(e_R^-)}$ (e polar flip)
 $A_{\text{FB}} = \frac{N_{top}(\cos\theta > 0) - N_{top}(\cos\theta < 0)}{N_{top}(\cos\theta > 0) + N_{top}(\cos\theta < 0)}$ (top direction)

- Semileptonic decay mode : tt→(bW)(bW)→(bqq)(blv) Allows reconstruction of the top quark
 Semileptonic decay mode : tt→(bW)(bW)→(bqq)(blv) I = e, µ charge
- From A_{LR} and A_{FB} , one deduces $g_{Z}(t_{L})$ and $g_{Z}(t_{R})$ couplings

Top quark cross section

108

107

- σ(tt) ≈ 600 fb at 500 GeV with 500 fb⁻¹
 - Ntotal ~ 570k events
 - Semileptonic ~ 34%
- Almost background free ?
 - Major background = other top channels → find 1 isolated lepton
 - − WW \rightarrow no b quark
 - − bb → simple topology
- Major background : ZWW
 (Z→bb) ≈ 8 fb, same topology
 - Small but needs to be subtracted

Σqq $\mu^+\mu^-$ or $\tau^+\tau^-$ 106 Zγ $(20^{\circ} < \theta < 160^{\circ})$ $\gamma\gamma$ 10⁵ (fb)e⁺e⁻ (Bhabha) W+M-104 ь $\sigma_{\rm pt}$ 103 ZZ10² $\mathbf{Z}\mathbf{h}$ E(E,>0.1E) ZWW 101 400 500 600 200 800 1000 (GeV) √s tt bb WW ZWW **Process** ZZ A_{LR} (%) 36.7 62.9 98.8 31.0 89 9

SM processes at LC

T. Han

Measurement with the ILD detector

- ILD optimised for Particle Flow technique (i.e. reconstruct every particle in a jet)
- 3.5 T B-field
- Performances :
 - Vertexing : $\sigma_{IP} = 5 \mu m$ (+) 10 $\mu m/p(GeV)sin^{3/2}\theta$
 - Tracking : $\sigma(1/p_T) < 5.10^{-5} \text{ GeV}^{-1}$
 - Granular calorimetry : $\sigma_F/E \approx 30\%/VE$

LC Forum, Feb. 2012

R.P./Philippe Doublet - LAL

Analysis within the ILCsoft framework

- Full simulation is done with the ILD detector under GEANT4 (Mokka software)
- « Objects » reconstructed with Particle Flow algorithm (Pandora)
- Data used : samples prepared for the LOIs

Requirements

Form the top with one b jet + 2 non-b jets left,
 lepton charge gives the opposite sign of the top

Identification of leptons

Isolation

Efficiencies and purities of the selected lepton

Efficiencies : angular and energetic

B tagging

3. EFFICIENCIES

Isolation

True lepton embedded inside a jet

- In reconstructed events, look at the true (MC) lepton :
 - Events forced to 4 jets
 - tt→bbqqlv : 4 jets + 1 lepton
- Define :
 - $z = E_{lepton}/E_{jet}$
 - $x_T = p_T / M_{jet}$
- Lepton is :
- 1. Leading (high z).
- 2. At high p_T
- 3. Not isolated
- \rightarrow optimise cuts on z and x_T
- N.B.: Note that this is based on old reconstruction flow, new s/w version allows to isolate lepton before jet finding also on DST

LC Forum, Feb. 2012

Efficiencies : angular and energetic

- Effiencies under control :
 - Tracking worse in very forward regions
 - Leptons with small energies are suppressed by isolation cuts

B tagging

 Vertex detector → measure offset, multiplicity and mass of jets to separate b from c decays

Top reconstruction Cross section and A_{LR} Problem with the top reconstruction Origin of the problem Precisions reached Conclusions and prospects

4. RESULTS

Top reconstruction

- 2 top candidates : $(b_1 + W)$ or $(b_2 + W)$
- Retain candidate with minimal

 $d^{2} = (M_{cand} - M_{t})^{2} / \sigma_{mt}^{2} + (E_{cand} - E_{beam})^{2} / \sigma_{Et}^{2} + (M_{W}^{rec} - M_{W})^{2} / \sigma_{mw}^{2}$

Cross-section and A_{LR}

- $\sigma = N/(\epsilon L), L = 500 fb^{-1}$
- After background suppression :

Efficiency = 72.7 % + Contamination = 4.6 % (mostly full hadronic top pairs)

- $\sigma(tt \rightarrow SL)_{unpol.} = 159.4 \text{ fb}$
 - Whizard : $\sigma(tt \rightarrow SL)_{unpol.}$ = 159.6 fb (-0.1%)
 - P(e⁻e⁺)= (±80%, 0) → Δσ/σ = 0.39% (stat.)
- A_{LR} = 0.435
 - $A_{LR} = 0.37$ expected... Whizard problem ?
 - However, interest lies in relative uncertainty
 - P(e⁻e⁺)= (±80%, 0) → ΔA_{LR}/A_{LR} = 1.24% (stat.)

Problem with the top reconstruction

Relative errors : -5.2% $(A_{FB}{}^{t}_{R})$ -40.4 % $(A_{FB}{}^{t}_{L})$ 1.1 % (stat.)

R.P./Philippe Doublet - LAL

Solving the problem

 $d^{2} = (M_{cand} - M_{t})^{2} / \sigma_{mt}^{2} + (E_{cand} - E_{beam})^{2} / \sigma_{Et}^{2} + (M_{W}^{rec} - M_{W})^{2} / \sigma_{mw}^{2}$

- 1. Is it due to the reconstruction?
 - \rightarrow Cut on the quality of the candidate (particle flow)
 - \rightarrow Efficiency in e_1^- : x60%
 - \rightarrow relative systematics : $40\% \rightarrow 20\%$
- 2. Is is intrinsic?
 - \rightarrow Effect of helicity structure of the decays
 - \rightarrow Ambiguous solutions
 - \rightarrow Seen with partonic reco.

 \rightarrow quality of the candidate

On ambiguities

Ambiguities are (partially) result of V-A structure of (electro)weak interaction

- Fermions participate only via left handed component of wave function to weak interaction
- Therefore hemisphere of b and thus of W_L emission varies as a function of top polarisation
- For t_R W_L gets boosted into top direction, for t_L it is emitted opposite to top direction and is nearly at rest (for small centre-of-mass energies)
 e.g. for √s = 500 GeV, E_{WI} ≈ 81 GeV for t_I
- The « resting » W gives rise to ambiguities in reconstruction of top angle!!!

Precisions reached

- Correction on A_{FB}^{t} = dominant systematic (reco. + intrinsic)
 - Good PFA + b tagging are essential
 - 20% correction on A_{FB}^{t} can be done on a well tuned MC

P _{e-} / P _{e+} (80% / 0)	A _{LR}	A _{FB} ^t _R	A _{FB} ^t L	Q ^z _{tL}	Q ^z _{tR}
stat. error	1.3%	1.2 %	1.4 %	1.0 %	1.9 %

• Possible to probe some RS models with $M_{\rm KK} \, ^{\sim} \, 2.8 \, {\rm TeV}$ up to 25 TeV

Conclusion and prospects I

- Impact of detector & reconstruction performances on a complex channel : lepton + 4 jets with 2 b jets
- Final efficiency = 72.7%
- Contamination = 4.6% (Major backgrounds are other top channels)
- σ and A_{LR} can be known at 0.4% and 1.3% statistical uncertainty (systematics guaranteed small due to large purity)
- Problem in reconstructing the direction of the top
 - Reconstruction needs improvements or leads to efficiency losses
 - Intrinsic problem with A_{FB}^t needs excellent Monte Carlo
 - $A_{FB R/L}^{t}$ known with 1.2/1.4% statistical uncertainty
- Study of A_{FB} to enter the DBD for the ILD in 2012 (work has been resumed by Jeremy Rouene)

LC Forum, Feb. 2012

Top mass reloaded

(First analysis steps by Jeremy)

Work in the next months

Let me remind that also we have only one PhD student working on it who has also hardware committments

- Testing of ilcsoft v01-13 (DBD release) against existing results
- Inclusion of background
- Study the influence of PFA on the migration effects. What in case of perfect PFA?
- Alternative jet algorithms
- The hard case: Tame migration effect by reconstruction of charge of b-quarks, Need collaboration with other groups (Valencia, University of Tokio)

Top physics : LHC and ILC Top couplings : bibliography

5. ADDITIONAL MATERIAL

Top physics : LHC and ILC

- LC 1 pb, LHC 1nb but for gluon couplings only
- Very good s/b at ILC and energy/momentum conservation allows to reconstruct modes with a neutrino
- Mt and Γ t with \approx 50 MeV error, 0.4% on cross section
- LC unique to measure t_R and t_L Z couplings at % (ND>4) LHC > 10 times worse

Top couplings : bibliography

- [1] : Djouadi et al., Nuclear Physics B, Volume 773, Issues 1-2, 25 June 2007, Pages 43-64
- [2] : Hosotani et al., Prog. Theor. Phys. 123 (2010), 757-790
- [3] : Cui, Gherghetta et al., arXiv:1006.3322v1 [hepph]
- [4]: Carena et al., Nuclear Physics B
 Volume 759, Issues 1-2, 18 December 2006, Pages
 202-227