

Higgs pair production in Composite Higgs models

Ramona Gröber in coll. with Margarete Mühlleitner | 09.02.2012

INSTITUTE FOR THEORETICAL PHYSICS

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Motivation

Hierarchy problem

 \rightarrow in Composite Higgs models: Higgs mass generated dynamically through loops of SM fermions and gauge bosons

 \rightarrow Higgs mass is naturally light

 \blacksquare To reconstruct Higgs potential \rightarrow measurement of Higgs self couplings is necessary

 \rightarrow trilinear coupling can be measured in Higgs pair production \rightarrow quartic Higgs coupling is accessible in Three-Higgs-production, but: Cannot even be measured at ILC/CLIC [CLIC Physics working group] or VLHC [Plehn, Rauch]

The Composite Higgs model

- Higgs boson is a bound state from a strongly-interacting sector [Kaplan, Georgi, Galison, Dugar; Dimopoulos, Preskill; Banks]
- Higgs boson emerges as a pseudo-Nambu-Goldstone boson from a global symmetry

$$G \xrightarrow{f} H \supset H_0 = SU(2)_L \times U(1)_Y$$

- G is explicitely broken by couplings of SM fields to strong sector \rightarrow loops of SM fermions and gauge bosons generate Higgs potential
- Higgs boson is naturally separated by a mass gap from the other usual resonances
- In an effective low-energy description only the Higgs couplings to the SM fields are modified and depend on $\xi = \frac{v^2}{t^2}$ with $\xi \in [0, 1]$ [Giudice,Grojean,Pomarol,Rattazz]

Minimal Composite Higgs models [Agashe, Contino, Pomarol;

Contino, Da Rold, Pomarol]

- Realized as 5D theory on AdS spacetime \rightarrow holographic interpretation in terms of 4D strongly coupled field theories
- Global symmetry $G = SO(5) \times U(1)_X$ broken down to
 - $SO(4) \times U(1)_X$ on IR-brane
 - $SU(2)_L \times U(1)_Y$ on UV-brane
- Higgs-fermion and Higgs self-couplings depend on the representation of the fermions:
 - spinorial representation: MCHM₄
 - fundamental representation: MCHM₅

Feynman rules

	MCHM ₄	MCHM ₅
HVV	$\sqrt{1-\xi}$	$\sqrt{1-\xi}$
ΗΗνν	1 – 2ξ	1 – 2ξ
ННН	$\sqrt{1-\xi}$	$\frac{1-2\xi}{\sqrt{1-\xi}}$
HfŦ	$\sqrt{1-\xi}$	$\frac{1-2\xi}{\sqrt{1-\xi}}$

New couplings appear from operators with dim>4 (e.g *g_{HHT}* which is important for Higgs pair production via gluon fusion)

What about the LHC?[RG, Mühlleitner]

6/19

- Dominating process: Gluon fusion (~ 1 order larger than cross section of vector boson fusion for SM)
- New coupling $g_{HH\bar{f}f} \sim rac{1}{v^2} \xi$

- Cxn increases with ξ
- The dominant background processes do not depend on ξ ⇒ prospects of extracting the signal are better than in SM
- In SM: λ_{HHH} can be measured with accuracy of 50 80% for $\int \mathcal{L} = 6000 \,\text{fb}^{-1}$ on 1σ level for $M_H = 120 \,\text{GeV}$ [Baur, Plehn, Rainwater].

- If there are any new fermions (top partners) below the cutoff, they can influence the cross section [Espinosa, Gillioz, RG, Grojean, Mühlleitner, Salvioni; in preparation]
- New parameters come into play, which have to be measured.
- They don't affect single Higgs production [Low, Vichi; Azatov, Galloway]. → Accessible in Higgs pair production or direct production of heavy top partners.
- If the top partners are very heavy and cannot be directly produced, a measurement of the triple Higgs coupling might not be possible anymore.
- \implies The triple Higgs coupling can only be measured at another collider.

Higgs pair production at the ILC

- The trilinear Higgs self coupling can be measured in Higgs pair production.
- Most important processes in SM at the ILC:
 - For low energies: Double Higgs-strahlung
 - For large energies: W fusion

Double Higgs-strahlung:

8/19

Ramona Gröber in coll. with Margarete Mühlleitner - Higgs pair production in Composite Higgs models

09.02.2012 9/19

Branching ratios [Espinosa, Grojean, Mühlleitner]

Sensitivities to $\lambda_{\rm HHH} \neq 0$ in double Higgs-strahlung

Assumption: EWSB is realized in the framework of MCHM (ξ can be measured with accuracy of \sim 20% at the LHC [Bock, Lafaye, Plehn, Rauch, Zerwas]; for anomolous Higgs couplings cf. [Barger, Han, Langacker, McElrath, Zerwas]) Criterion:

 $\mathbb{S} + \beta \sqrt{\mathbb{S}} < \mathbb{S}_{\lambda_{HHH}=0}$ or $\mathbb{S} - \beta \sqrt{\mathbb{S}} > \mathbb{S}_{\lambda_{HHH}=0}$ $(\beta = 1, 2, 3, 5)$

MCHM₄ for $\int \mathcal{L} = 500 \, \text{fb}^{-1}$ and $\sqrt{s} = 500 \, \text{GeV}$:

MCHM₅ for $\int \mathcal{L} = 500 \, \text{fb}^{-1}$ and $\sqrt{s} = 500 \, \text{GeV}$:

Feasibility

- Our analysis represents only the ideal case for a realistic study detector properties and background processes have to be taken into account
- In the SM, the triple Higgs coupling can be measured with a precision of 22% for $\int \mathcal{L} = 1 \text{ ab}^{-1}$ [Castanier, Gay, Lutz, Orloff; Djouadi, Kilian, Mühlleitner, Zerwas; Baur; talk by Junping Tian]
- In the MCHM the cross sections are reduced but not the dominant background processes- prospects are worse than in the SM

Ramona Gröber in coll. with Margarete Mühlleitner – Higgs pair production in Composite Higgs models

09.02.2012 14/19

Energy behaviour in W fusion

For high energies: $\mathcal{M}\sim\xi s$ Modified couplings to vector bosons— no complete cancellation of s-dependence

Partial wave unitarity: Theory is only valid up to cutoff of effective description, which should be smaller than unitarity bound.

The diagram involving $\lambda_{\rm HHH}$ is not $\sim s \Rightarrow$ Irreducible background (of the other diagrams) becomes dominating for high energies.

MCHM₄ for $\int \mathcal{L} = 500 \text{ fb}^{-1}$, $\sqrt{s} = 1 \text{ TeV}$ and polarized beams (factor 4 for cross section, but realistically $P(e^-) \approx 80\%$, $P(e^+) \approx 60\%$ [Moortgat-Pick et al.]):

16/19

MCHM₅ for $\int \mathcal{L} = 500 \text{ fb}^{-1}$, $\sqrt{s} = 1$ TeV and polarized beams:

- The W fusion cross section increases with rising ξ
- λ_{HHH} can be measured with a precision of \sim 10% in the SM [Boos, Battaglia, Yau;

Yasui, Kanemura, Kiyoura, Odagiri, Okada, Seneha, Yamashita; Baur]

 Similar results can be expected in a some parts of the parameter region in W fusion

Conclusion

- Measurement of Higgs self couplings necessary to reconstruct Higgs potential
- A measurement of λ_{HHH} at the LHC is very difficult.
- In MCHM cross sections in double Higgs-strahlung are reduced compared to the SM \rightarrow prospects of extracting λ_{HHH} look worse.
- The W boson fusion cross section increases with rising ξ and the energy.
- Large parameter regions where $\lambda_{\rm HHH}$ seems to be measurable in *W*-fusion and double Higgs-strahlung.

Constraints from electroweak data

Figure: See [Espinosa, Grojean, Mühlleitner]

New kinetic terms \rightarrow field redefinition

$$\Phi = \frac{v}{\sqrt{2}} \begin{pmatrix} 0 \\ \\ \frac{1}{v} \left(H - \frac{c_{H\xi}}{2} \left(H + \frac{H^2}{v} + \frac{H^3}{3v^2} \right) \right) + 1 \end{pmatrix}$$

 \rightarrow redefinition of Higgs and fermion masses and vacuum expectation value

$$\frac{v^2}{2} = \frac{\mu^2}{2\lambda} \left(1 - \frac{3}{4}c_6 \xi \right) = \frac{(246\,\text{GeV})^2}{2}$$

$$\begin{split} m_f &= \frac{1}{\sqrt{2}} y_f v \left(1 + \frac{\xi}{2} c_y \right) \;, \\ \frac{M_H^2}{2} &= \frac{\left(\sqrt{2\lambda} v\right)^2}{2} \left(1 - c_H \xi + \frac{3}{4} c_6 \xi \right) \;. \end{split}$$

$$\begin{split} g_{\text{HVV}} &= g_{\text{HVV}}^{\text{SM}} \left(1 - \frac{c_{\text{H}}}{2} \xi\right) & \text{with } g_{\text{HWW}}^{\text{SM}} = g \, M_{\text{W}} \text{ and } g_{\text{HZZ}}^{\text{SM}} = \frac{g \, M_{\text{Z}}}{2} \\ g_{\text{Hff}} &= g_{\text{Hff}}^{\text{SM}} \left(1 - \xi \frac{c_{\text{H}}}{2} + \xi c_{\text{y}}\right) & \text{with } g_{\text{Hff}}^{\text{SM}} = \frac{g \, m_{f}}{2 \, M_{\text{W}}} \\ g_{\text{HHH}} &= g_{\text{HHH}}^{\text{SM}} \left(1 + \xi c_{6} - \xi \frac{3 \, c_{\text{H}}}{2}\right) & \text{with } g_{\text{HHH}}^{\text{SM}} = \frac{3 \, g \, M_{\text{H}}^{2}}{2 \, M_{\text{W}}} \end{split}$$

Ramona Gröber in coll. with Margarete Mühlleitner – Higgs pair production in Composite Higgs models 09.02.2012

23/19

MCHM₅ for $\int \mathcal{L} = 500 \, \text{fb}^{-1}$, $\sqrt{s} = 1$ TeV and unpolarized beams:

