

Search for the SM Higgs Boson with ATLAS

Linear Collider Forum 2012 07.02.2012

Jana Schaarschmidt on behalf of ATLAS

Laboratoire de l'Accélérateur Linéaire Orsay (Université de Paris-Sud XI)

Data Taking in 2011

- Pileup increased in second phase of 2011 data taking, change of β*
- → Increase of average interactions per bunch crossing <µ> from 6 to 12
- Recorded events with more than 20 reconstructed vertices

- Recorded 5.2 fb⁻¹ of data taken at √s=7 TeV and 50 ns bunch spacing in 2011
- Peak luminosity: 3.6 · 10³³ cm⁻² s⁻¹
- Design parameters: 10³⁴ cm⁻² s⁻¹, √s=14 TeV,
 25 ns bunch spacing
- Splendid ATLAS performance in 2011

The ATLAS Detector

Muon Spectrometer: |n|<2.7

Air-core toroids and gas-based muon chambers $\sigma/p_T = 2\% @ 50$ GeV to 10% @ 1TeV (ID+MS)

EM Calorimeter: |η|<3.2 Pb-LAr Accordion σ/E=10% VE⊕0.7%

Inner Detector: $|\eta| < 2.5$, B=2T, Si pixels/strips and Trans. Rad. Det.; $\sigma/pT =$ 0.05% pT (GeV) \oplus 1%

Hadronic calorimeter: $|\eta| < 1.7$ Fe/scintillator 1.3< $|\eta| < 4.9$ Cu/ W-LAr; σ /Ejet= 50%/VE \oplus 3%

Higgs Boson Production at the LHC

Provides little additional sensitivity

Leptonic signature useful for study of $H \rightarrow b\overline{b}$

Theory uncertainty mostly from scale variations, PDFs and $\alpha_{\sc{s}}$

g

Higgs Boson Decay

High mass searches (200-600 GeV):

 $H \rightarrow W W \rightarrow Ivqq$

$$H \to Z Z \to IIqq$$

 $H \to Z Z \to II \nu \nu$

Wide Range Searches (110-600 GeV): $H \rightarrow W W^{(*)} \rightarrow IvIv$

$$H \to Z Z^{(*)} \to 4 I$$

Low Mass Search (110-150 GeV): $ightarrow H \rightarrow \gamma \gamma$ $m H \rightarrow \tau \tau$ $m H \rightarrow b\overline{b}$

are presented here. More results in the backup.

$H \rightarrow \ ZZ \rightarrow IIqq$

Event selection:

- Two same flavor leptons (e/ μ), two jets
- |m_µ-m_z| < 15 GeV
- $E_{T}^{miss} < 50 \text{ GeV}$
- IIbb and IIqq subsample (*tagged & untagged*)
- Special high mass selection: Jet pT > 45 GeV, ΔΦ(I,I) < 1.6, ΔΦ(j,j) < 1.6

	Data	Total BG	тн=400 GeV
untagged	851	$919\pm20\pm103$	$21.1\pm0.5\pm3.4$
tagged	6	$11.6 \pm 0.6 \pm 1.6$	$2.1\pm0.2\pm0.6$

ATLAS-CONF-2011-150

2.05 fb⁻¹

ATLAS-CONF-2011-150

Combined limit of tagged and untagged analyses:

95% CL limit on σ/σ_{SM} ATLAS Preliminary 20 Observed 18 Expected Ldt=2.05fb⁻¹, √s=7TeV 16 ± 1σ H→ZZ→llqq 14 $\pm 2\sigma$ 12 10 8 6 4 2 0 350 250 300 500 550 600 200 400 450 m_H [GeV]

- Both categories contribute roughly equally
- Best sensitivty at 360 GeV: excl. 1.2 x SM cross section
- No significant excess, smallest p₀ 13 %

	Data	Total BG	тн=400 GeV
untagged	851	$919\pm20\pm103$	$21.1\pm0.5\pm3.4$
tagged	6	$11.6 \pm 0.6 \pm 1.6$	$2.1\pm0.2\pm0.6$

$H \rightarrow ZZ \rightarrow II\nu\nu$

2.05 fb⁻¹

Events / 50 GeV

ATLAS-CONF-2011-148

Event selection:

- Pair of same flavor opposite sign leptons
- Veto events with b-tags
- |m_z-m_µ| < 15 GeV
- $\Delta \Phi(E_{T}^{miss}, pT \text{ leading jet}) > 0.3$
- Cuts on $\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}$, $\Delta \Phi(\mathsf{I},\mathsf{I})$, $\Delta \Phi(\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}},\mathsf{p}_{\mathsf{T}}^{\mathsf{II}})$

Special selections for low and high mass (separated at mH = 280 GeV)

Data	Total BG	тн=400 GeV
89	$100\pm3\pm17$	$19.6\pm0.2\pm3.4$

Observed exclusion: 310 GeV < mн < 470 GeV Expected exclusion: 320 GeV < mH < 460 GeV

Most sensitive channel in intermediate mass range.

Event Selection:

- Two isolated leptons with pT > 15 (20) GeV for μ (e), leading lepton pT > 25 GeV
- ee/μμ: |m_{||}-m_z| >15 GeV, m_{||}> 15 GeV, E_{T,rel}^{miss} > 40 GeV
 eμ: m_{||}> 10 GeV, MET_{rel} > 25 GeV

$E_{\rm T,rel}^{\rm miss} = \begin{cases} E_{\rm T}^{\rm miss} & \text{if } \Delta \phi \ge \pi/2\\ E_{\rm T}^{\rm miss} \cdot \sin \Delta \phi & \text{if } \Delta \phi < \pi/2 \end{cases}$

 $\Delta \Phi = \min(\Delta \Phi(\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}},\mathsf{lep}), \Delta \Phi(\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}},\mathsf{jet}))$

H+0jet selection:

2.05 fb⁻¹

 \rightarrow WW background dominant

Cut p_T^{\parallel} > 30 GeV

H+1jet selection:

\rightarrow Large tt background

- Veto on jets with a b-tag
- Z $\rightarrow \tau \tau$ veto by $|m_{\tau\tau} m_{\gamma}| > 25 \text{ GeV}$
- Total $p_T < 30 \text{ GeV} (E_T^{\text{miss}} + \text{leptons +jet})$
- Cuts on $m_{_{||}}$, $\Delta \phi_{_{||}}$

Cuts optimized for three different mass ranges.

arXiv:1112.2577

2.05 fb⁻¹

Mass reconstruction not fully possible, instead m₊

Final cut: mт window dependent on mн

Background control

W+jets

Estimated entirely from a control region

WW and top:

Shape from MC, normalization from control region

Z+jets:

scaled by ~0.8-0.9 to account for $E_{T,rel}^{miss}$ mismodelling, shape from MC

Total uncertainties after selection:

	0-jet	1-jet
WW	13 %	21 %
top	26 %	64 %
W+jets	43 %	31 %
Z+jets	240 %	140 %
Signal	22 %	21 %

2.05 fb⁻¹

Mass reconstruction not fully possible, instead m₊

Expected and observed events:

Final cut: mт window dependent on mн

Signal (stacked) mH=130 GeV

$H \rightarrow W W^{(*)} \rightarrow I \nu I \nu$

2.05 fb⁻¹

Local p_o value

Results:

- Broad excess in low mass region, corresponding to a significance of 1.9σ
- Observed exclusion: 145 206 GeV
- Expected exclusion: 134 200 GeV

4.8 fb⁻¹

Clean but very rare channel. BR (H \rightarrow 4I) ~0.04% for 150 GeV

ATLAS-CONF-2011-162

Event selection

- Isolated e or μ , cut on impact parameter, two OS pairs: ee ee, $\mu\mu$ $\mu\mu$, ee $\mu\mu$
- Lepton pT > 7 GeV, but at least two with pT > 20 GeV
- |m12 mz| < 15 GeV (one on-shell Z)
- Cut on mass of other pair, m34, depending on m41

4I mass resolution

Gaussian σ:	4µ: 1.98 GeV, 2e2µ: 2.18 GeV,
mн=130 GeV	4e: 2.53 GeV

FWHM: mH=130 GeV: 4.5 – 6.5 GeV mH=400 GeV: 35 GeV

At high mass natural width dominant.

Signal predicition for 4.8 fb⁻¹:

mн / GeV	130	150	200	400	600
S	2.7	6.1	15.7	6.8	1.3

$H \rightarrow ZZ^{(*)} \rightarrow 4\ell$	4.8 fb	-1	14 / 29
	4μ	2e2µ	4e
Background, m41 < 180 GeV	2.2 ± 0.3	4.2 ± 0.8	2.9 ± 0.8
Data, m4l < 180 GeV	3	3	2

- ZZ^(*) continuum estimated from MC, 15% uncertainty assigned
- Top-pairs and Z+jets normalizations from control regions: 10% error on $t\bar{t}$, ~40% on Z+jets

$H \rightarrow 4\,\mu$ candidate, m = 124.6 GeV

$H \rightarrow 2e \ 2\mu$ candidate, m = 124.3 GeV

Limits on the production cross section in units of SM Higgs cross section:

po: Probability that background fluctuates to the observed number of events

Local po-values:

mH = 125 GeV1.8%(2.1σ)mH = 244 GeV1.1%(2.3σ)mH = 500 GeV1.4%(2.2σ)

After **look-elsewhere correction**: Excesses no longer significant.

Full mass range: p0 ~50%

Only allowed mass region (mH<146 GeV): p0 ~30%

ATLAS-CONF-2011-161

- **Event selection**
- Trigger on two γ with ET > 20 GeV
- Converted and unconverted photons $|\eta|$ <2.37, excluding 1.37< $|\eta|$ <1.52
- Isolation: E_{T,corrected} < 5 GeV
- Shower shape based γ identification
- pT cuts: 40 GeV (leading photon), 25 GeV (subleading photon)
- Diphoton mass: 100-160 GeV

22 489 events

71% of them true diphoton events

Diphoton mass after event selection

Expected signal yield BR(H $\rightarrow \gamma\gamma$): ~0.2 %

Signal selection	150	140	130	125	120	110	m _H [GeV]
efficiency: ~35%	31	50	64	68	71	70	S

Run Number: 191426, Event Number: 86694500 Date: 2011-10-22 15:30:29 UTC

Both photons unconverted, in central region.

m_{γγ}=126.6 GeV $p_{\tau}^{\gamma\gamma}$ = 6.1 GeV pTt = 5.4 GeV E₁₁ = 64.2 GeV E₁₂ = 61.4 GeV

9 categories based on conversion status, position in the calorimeter, pTt

"Central" and "Rest" categories further divided: "Low pTt": pTt < 40 GeV "High pTt": pTt > 40 GeV

- Signal events have larger pTt than the backgrounds, in particular the VBF and associated production modes
- Expect 5-10 % gain in sensitivity with usage of pTt categories

Η

 $H \rightarrow \gamma \gamma$

4.9 fb⁻¹

Determine photon direction from 1st and 2nd calorimeter layer. Combine 1st layer with inner detector information if photon is converted.

 $\rightarrow \sigma(z)$ = 1.5 cm (unconverted, Barrel)

Expected mass resolution (m_{μ} =120 GeV):

[GeV]	FWHM	σ _{Core}
Best category	3.3	1.4
Worst category	5.8	2.3
Inclusive	4.0	1.7

5-20% improvement of resolution with pointing

Results

Simultanious fit of all nine categories with a correlated signal strength.

Expected 95% CL limits on σ/σ_{SM} :

1.6-2.9, in 115-130 GeV: 1.6-1.8

Observed exclusions:

m_H=114-115 GeV, m_H=135-136 GeV

The smallest local po:

0.24% (**2.8** σ) at m_H=126 GeV

The global significance

(with look-elsewhere-correction) is **1.5** σ .

ATLAS-CONF-2011-163

Expected (dashed lines) and observed (solid lines) exclusion limits per channel

W/Z H \rightarrow bb with 1fb⁻¹ not included here due to little sensitivity.

Combined upper limits on Higgs cross section:

Expected 95% CL. exclusions: 124.6 - 520 GeV.

Observed 95% CL exclusions: 112.7 – 115.5 GeV, 131 – 237 GeV, 251-468 GeV

Non excluded range around 245 GeV due to 4I excess already excluded by LHC combination. Observed 99% CL. Exclusions: 133-230 GeV, 260-437 GeV.

Combination

Combination

Outlook

Higgs Searches Updates

- Many channels soon updated with full 2011 statistics:
 - $H \rightarrow WW \rightarrow l\nu l\nu / lnqq, \ H \rightarrow \tau\tau, H \rightarrow b\overline{b}, H \rightarrow ZZ \rightarrow llqq, H \rightarrow ZZ \rightarrow ll\nu\nu, ...$
- Updated ATLAS combination for Moriond 2012
- After Moriond: Probably ATLAS + CMS combination

Prospects for 2012+

- Beam energy increase: $\sqrt{s} = 8 \text{ TeV}$
- Expect to collect 15 fb⁻¹ in 2012
- More pile-up: up to 27 interactions per crossing
- 2013-2014: Long shutdown

Possible: 5σ discovery by ATLAS alone at 125 GeV. CMS+ATLAS together can achieve 5σ at 115 GeV.

2012 should answer the question whether the SM Higgs exists or not!

Backup Slides

Fitted signal strength

Signal strength $\mu = \sigma / \sigma_{_{SM}}$.

It indicates by what factor the SM Higgs boson cross section would need to be scaled to best fit the observed data.

At 126 GeV: μ = 1.5 (due to $\gamma\gamma$ excess), consistent with 1 within $\pm 1\sigma$ band.

Summer Results of EW Precision Data Fits

Latest update by the Gfitter group (http://gfitter.desy.de/Standard_Model/)

Includes LHC results presented at EPS 2011

(ATLAS: arXiv:1106.2748, CMS: arXiv:1102.5429) and Tevatron (arXiv:1107.5518)

ATLAS-CONF-2011-157

ATLAS+CMS combination after Lepton-Photon conference

SM Higgs boson excluded for $m_{_{\rm H}} > 141$ GeV and $m_{_{\rm H}} < 476$ GeV Constrain from below: LEP limit (114.4 GeV)

Channels entering into the combinations

Channel	Lumi [fb ⁻¹] ATLAS	Lumi [fb ⁻¹] CMS	¹] Mass range Mass range ATLAS [GeV] CMS [GeV]		Remark
$H\to\gamma\gamma$	4.9	4.7	110-150	110-150	Categories: ATLAS: 9 CMS: 4
$H \to bb$	-	4.7	-	110-135	CMS: MVA
$H\to\tau\tau$	1.1	4.6	100-150	110-145	
$H\toWW\toI\nuI\nu$	2.1	4.6	110-300	110-600	ATLAS: 0/1 j CMS: 0/1/2 j
$H \to WW \to \ Ivqq$	1.1	-	240-600	-	
$H \to ZZ \to 4I$	4.8	4.7	110-600	110-600	CMS: Looser cuts
$H \rightarrow ZZ \rightarrow IIqq$	2.1	4.6	200-600	130-164 200-600	
$H \to Z Z \to I I \tau \tau$	-	4.7	-	190-600	
$H \to Z Z \to I I \nu \nu$	2.1	4.6	200-600	250-600	

Combined upper limits

Observed 95% CL. exclusion: 127 – 600 GeV Expected 95% CL. Exclusion: 117 – 543 GeV Observed 99% CL. exclusion: 128 – 525 GeV

Comparison to CMS

Local p_o and signal strength

Broad excess in non-excluded mass range.

Two narrow excesses seen:

119 GeV (4I), 124 GeV (γγ)

Minimal p_0 : 0.5% (2.6 σ)

Global $p_0 = 0.6\sigma$ (110-600 GeV) or 1.9 σ (110-145 GeV)

Fitted signal strength is consistent with 1 within $\pm 1\sigma$ in low mass region.

Comparison to CMS

- Both experiments "not inconsistent with SM Higgs boson hypothesis" each
- How compatible are the two experiments with each other? 2012 data will tell!

Kinematic distributions

After cut on dilepton pT (total pT) in 0 (1) jet bin

Systematic uncertainties

- Luminosity: $\pm 3.7\%$
- Cross sections (15-20%, 3-9% VBF, 3-4% W/ZH)
- Extra uncertainty assigned for exclusive jet bins (10% in 0-jet bin, 20% in 1-jet bin)
- Jet energy scale: $10\% \oplus 7\%$ due to pile-up
- Lepton efficiency uncertainties: 2-5% (e) or 0.3-1% (μ)
- B-tagging efficiency: 6-15%, mistagging rate: 21 %
- 13% uncertainty on Etmiss measurement
- WW background normalization: 7.6% (21%) in 0-jet (1-jet) bin
- Top background normalization: ~38%

Results for all subchannels

Background control and systematic uncertainties

- Dominant background: ZZ^(*) continuum Shape and normalization estimated from MC, 15% uncertainty assigned
- Top-pairs checked on control region, 10% uncertainty on $\ensuremath{t\bar{t}}$ cross section
- Z+jets normalization from control region
 45% uncertainty on Z+light jets and 40% uncertainty on Zbb normalization

Background composition checked in a control region:

No charge, isolation and impact parameter requirements on second lepton pair

$\mathsf{H} \to \mathsf{ZZ}^{(*)} \to 4\ell$

4.8 fb⁻¹

Uncertainties on lepton reconstruction and identification

- Estimated from data with W, Z and J/ Ψ events
- Signal and background accpetance uncertainties coming from μ uncertainties: 0.22% (4 μ) and 0.16% (2e2 μ) over full mass range
- Acceptance uncertainties coming from e uncertainties: Between 2.3% (4e) and 1.6% (2e2µ) at high mass, up to 8.0% and 4.1% at low mass

Further signal systematics:

- Cross sections 15-20%, 3-9% VBF, 3-4% W/ZH
- 2% on signal acceptance by kinematic selection
- Luminosity uncertainty: ±3.9%

Signal processes:

 $H \rightarrow \gamma \gamma$

Dominantly by gluon fusion

Vector-boson-fusion (VBF) and associated production (WH, ZH, $t\bar{t}H$) also considered

Background processes:

Drell Yan (DY):

 $Z \rightarrow ee$ (both electrons mis-identified as γ)

Interference between $gg \rightarrow H \rightarrow \gamma\gamma$ and $gg \rightarrow \gamma\gamma$ accounted for (2-5% reduction of signal rate)

Inclusive data sample composition

 $H \rightarrow \gamma \gamma$

Evaluated with "double ABCD" method

1st error: statistical, 2nd error: systematic uncertainty

Composition	γγ	γj	jj	DY
Events	$16000\pm 200\pm 1100$	$5230 \pm 130 \pm 880$	$1130\pm50\pm600$	$165\pm2\pm8$
Relative Fraction	71%	23%	5%	1%

 $\gamma\gamma$ dominant

Excellent stability of the composition over large data taking period of 2011:

Comparison to MC predictions

Systematic uncertainties

Signal

Signal yield: ~20% Dominated by uncertainties on cross sections and photon ID efficiencies.

Signal resolution: 14% Dominated by calorimeter energy resolution

Signal migration among categories: 4.5%, 8%

Not included in nominal result: Photon energy scale uncertainties \rightarrow Uncertainty on the mass position of ~0.7 GeV

Background

Uncertainty due to imperfect modelling of the true background shape: $\pm(0.1-5.6)$ events

Background Uncertainties

 $H \rightarrow \gamma \gamma$

Uncertainty due to imperfect modelling of the true background shape: $\pm(0.1-5.6)$ events

Evaluated residual of true shape and the model with large quantities of RESBOS diphoton events

Attributed this uncertainty to an extra term with signal shape (worst case)

Uncertainty in number of events per category:

Category	CP1	CP2	CP3	CP4	CP5	CP6	CP7	CP8	CP9
Events	±4.3	±0.2	±3.7	±0.5	±3.2	±0.1	±5.6	±0.6	±2.3

Alternative background models:

"Hybrid": High pTt categories fit with Bernstein

"Bernstein": All categories fit with Bernsetin

(Default: Fit with signle exponential)

$H \rightarrow WW \rightarrow Ivqq$

1.04 fb⁻¹

Event selection:

- Isolated e or μ with pT > 30 GeV
- E_T^{miss} > 30 GeV
- $|m_{_{qq}} m_{_W}| < 10 \text{ GeV}$
- Reject events with b-jets
- Split into 0 and 1 extra jet analyses

Mass reconstruction:

Constraint: m(Iv) = m(W)

Rejects 45% of BG and 36% of signal

Mass resolution : 7.5% (for mH=400 GeV)

Sample composition studied with MC and data (Multijet and W/Z data-driven)

Limits from double exponential fit to the mass

Dominant uncertainties: Jet energy scale and jet resolution

Data	Total BG	mн=400 GeV
41 687	$42\ 600\pm 1\ 200$	58 ± 15

arXiv:1109.3615

$H \rightarrow WW \rightarrow Ivqq$

1.04 fb⁻¹

Event selection:

- Isolated e or μ with pT > 30 GeV
- E_T^{miss} > 30 GeV
- $|m_{_{qq}} m_{_W}| < 10 \text{ GeV}$
- Reject events with b-jets
- Split into 0 and 1 extra jet analyses

Mass reconstruction:

Constraint: m(Iv) = m(W)

Rejects 45% of BG and 36% of signal

Mass resolution : 7.5% (for mH=400 GeV)

Sample composition studied with MC and data (Multijet and W/Z data-driven)

Limits from double exponential fit to the mass

Dominant uncertainties: Jet energy scale and jet resolution

Data	Total BG	mн=400 GeV
41 687	$42\ 600\pm 1\ 200$	58 ± 15

45

$\tau\tau \rightarrow \text{II} + 4\nu$

- Two isolated OS leptons
- Require a high p⊤ jet to boost the system
- Cuts on $\Delta \Phi(II)$, m $\tau \tau j$, m_{II}
- Collinear approximation to reconstruct $\tau\tau$ mass:

 $m_{\tau\tau} = rac{m_{vis}}{\sqrt{x_1 x_2}}$ x is momentum fraction of visible decay products

• Mass resolution $m_{_{\rm H}}$ =120 GeV ~ 24 GeV

(bit less for VBF)

 $\tau \tau
ightarrow I au_{had}$ + 3ν

- More background (from fake τ): W, QCD
- τ pT: 20 GeV, neural net based τ ID
- MET > 20 GeV, mT < 30 GeV
- Stronger at higher masses

Missing Mass Calculator arXiv: 0901.0512

Background control:

- Irreducible $Z \rightarrow \tau \tau$ shape from τ embedding into $Z \rightarrow \mu \mu$ data events arXiv: 1107.5003v1
- Fake lepton backgrounds from control sample

Dilepton channel:

Data	Total BG	тн=120 GeV
46	47.4±4.9	0.8

(ggF and VBF)

1.06 /fb

Dominant systematic uncertainties:

Jet and τ energy scale, τ ID and MET

Results of MSSM h/A/H $\rightarrow \tau \tau$ in backup slides.

Future: Dedicated VBF analysis.

ATL-CONF-2011-103

W/Z associated. Largest branching fraction at low mass, but huge backgrounds.

Event Selection:

- Single lepton triggers: µ18, e20
- At least two jets with pT > 25 GeV within $|\eta| < 2.5$, two highes pT jets b-tagged

$\mathbf{ZH} \ \rightarrow \mathbf{IIbb}$

- Two isolated leptons (e/ μ), pT>20 GeV
- MET < 50 GeV (rejects top)
- |m_µ-m_z| < 15 GeV

$WH \to I\nu bb$

- One isolated lepton (e/ μ) pT > 25 GeV
- MET > 25 GeV
- mT > 40 GeV $m_T = \sqrt{2p_T^{\ell} p_T^{\nu} (1 \cos(\phi^{\ell} \phi^{\nu}))}$

$H \rightarrow b\overline{b}$

Background Control:

All background checked on data using control samples.

Typically: Shape from MC, normalization from a sideband. $W_{b\bar{b}}$ and QCD shape from data.

Results:

Future: Boosted Higgs at high pT, use jet substructure

MSSM h/A/H $\rightarrow \tau\tau$

100 GeV < mA < 600 GeV

ATL-CONF-2011-132

In SUSY coupling to vector bosons supressed/absent. Enhanced coupling to down-type fermions, $\sim tan\beta$

Considered final states: $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$

Leplep channel:

Lephad channel

- Lepton pT cut trigger dependent: e (μ): 22 (10) GeV or 15 (20) GeV
- Sum lepton pT + MET < 120 GeV
- ΔΦ(eμ) > 2.0

- Two- τ trigger
- \bullet Cut based τ ID
 - τ pT > 45 (30) GeV
- MET > 25 GeV
- Veto events with high-pT leptons
- Lepton pT: e (μ) 25 (20) GeV when more leptons in the event: e (μ) 15 (10) GeV
- τ pT: 20 GeV, τ ID BDT based
- MET > 20 GeV, mT < 30 GeV

Missing Mass Calculator arXiv: 0901.0512

MSSM h/A/H $\rightarrow \tau \tau$

100 GeV < ma < 600 GeV

Background control:

- W+jets and QCD from SS mass shape in lephad channel
- QCD in fully hadronic channel from ABCD method (τ ID vs. charge product)

Systematic uncertainties:

- Dominant $\tau_{_{\!\!\! h}}$ ID efficiency & fake rate uncertainty: 10 %
- \bullet Also important: τ and jet energy scales and resolutions

MSSM h/A/H $\rightarrow \tau \tau$

100 GeV < ma < 600 GeV

Results:

*ggF and b-associated production

	Data	Total BG	Signal* tanβ=20
leplep	2 472	$2\ 600\pm 200$	тн=120 GeV:155±6
lephad	1 913	$2\ 100\pm400$	тн=120 GeV:116±9
hadhad	245	233 +44 -28	mн=200 GeV:19±1

Search channel: $t\bar{t} \rightarrow H^+b + W^-b \rightarrow \tau \nu b + qq' b$

ATLAS-CONF-2011-138

Event selection:

- MET + τ trigger
- MET > 50 GeV
- Hadronic t with pT > 35 GeV
- At least one b-tagged jet

MSSM $H^+ \rightarrow \tau v$

- Two additional jets + b-jet
- Final discriminant: mT

Data	Total BG	mн⁺=130 GeV, BR (t→bH⁺)=0.1
43	37±7	70

- \bullet Jet and τ related systematics dominant
- True τ background via τ embedding into μ +jets data sample

$H^{\pm\!\pm\!}\!\!\to\mu\mu$

100 GeV < mн[±] < 400 GeV 1.6 /fb

ATL-CONF-2011-127

- Relevant models eg. Little Higgs, Higgs triplets
- Select events with 2 high p⊤ same sign muons
- Production in DY process $q\overline{q} \to Z/\gamma^{*} \to H^{\scriptscriptstyle ++}H^{\scriptscriptstyle --}$
- If BR=1, left-handed $H^{\pm\pm}$ excluded for mH < 375 GeV, right-handed $H^{\pm\pm}$ excluded for mH < 295 GeV

$H \rightarrow \gamma \gamma$ Fermiophobic Scenario (1.08 fb⁻¹)

4th Generation

- Heavy 4th generation: m = 600 GeV
- Exclusion: 120 GeV – 600 GeV