International Linear Collider – Status and Parameters

RDR version of the ILC

LC Forum, DESY, February 7-9, 2012

ILC - the Global Design Effort started in 2005...

ILC – Evolution of the Reference Design Report

publication early 2013

International Linear Collider ILC

- Approaching end of Global Design Effort
 - Accelerating gradient of 31.5 MV/m
 - Damping ring issues (e-could etc.)
 - Test facilities (FLASH, ATF, CesrTA)
 - Cost optimization
- TDR to be issue by end of 2012

Machine prepared for construction decision

LILLA

Design changes proposed in 2009

- Single accelerator tunnel
- smaller damping ring
- relocation of e+-source to end of linac
- SCRF gradient spread: 31.5 MV/m ± 20%

HLRF:

Klystron cluster scheme (KCS) and Distributed RF system (DRFS) with RDR RF unit as backup

Cavity Gradient Milestone 2010 achieved

Differential yield

A two-pass electro-políshíng process tends to achíeve the yíeld goal.

Recent SRF progress

Americas

FNAL mechanical polishing improved 9-cell cavity ACC15 gradient from 19 MV/m to 35 MV/m JLAB started processing and testing DESY seamless 9-cell cavity built from DESY 3-cell seamless units 6 of AES 3rd production & 4 Niowave-Roark 1st production received by FNAL

Asia

PKU-JLab reached 28.6 MV/m KEK MHI-12 exceeds 40 MV/m at $Q_0=6.2\times10^9$ KEK-JLAB: ACD shape cavity ICHIRO7 reached 40 MV/m at $Q_0=8\times10^9$

• Europe DESY large-grain 9-cell cavity AC155 reached 45 MV/m at $Q_0 > 10^{10}$

Mass production of cavities for European XFEL just beginning

DESY Large-Grain Cavity AC155

High gradient requirement of 45 MV/m foreseen for 1 TeV extension

TTF/FLASH – 9 mA experiment

- 15 consecutive studies shifts (120 h) and with no downtime
- Time to restore 400 µs bunch-trains after beamoff studies: ~10 mins
- Energy stability with beam loading over periods of hours: ~0.02%
- Individual cavity "tilts" equally stable

Energy stability over 3hrs with 4.5mA

2200 bunches @ 3 nC (3 MHz) for short períods achíeved

Lo oorti maastrankaton

ATF2 – Beam size/stability and kicker tests

2010年10月19日 火曜日

CesrTA - wiggler observations

ILC – ecloud mitigation schemes

Field Region	Baseline Mitigatior	Alternatives for Further Investigation		
Drift*	TiN Coating	Solenoid Windings	NEG Coating	
Dipole	Grooves with TiN Coating	Antechambers for power loads and photoelectron control	R&D into the use of clearing electrodes.	
Quadrupole*	TiN Coating		R&D into the use of clearing electrodes or grooves with TiN coating	
Wiggler	Clearing Electrodes	Antechambers for power loads and photoelectron control	Grooves with TiN Coating	

Detailed views of tunnel layouts available

Japanese candidate sites

Single tunnel layout in granite area

- Broad base (17 m) and 5 m height with refitted 3.5 m concrete wall is cost effective
 - preferred over single circular tunnel
 - Kamaboko tunnel
- Broad tunnel enables use of RDR like HLRF power distribution
 - 10 MW klystron for 26 cavities

recent development

"granite stability test" aired on NHK 19.1.2012

Beyond ILC TDR

ICFA LC parameters subcommíttee (2003-2006)

The strong likelihood that there will be new physics in the 500 – 1000 GeV range means that the upgradeability of the LC to about 1 TeV is the highest priority step beyond the baseline.

- The energy of the machine should be upgradeable to approximately 1 TeV.
- The luminosity and reliability of the machine should allow the collection of order of 1 ab⁻¹ (equivalent at 1 TeV) in about 3 to 4 years.
- The machine should have the capability for running at any energy value for continuum measurements and for threshold scans up to the maximum energy with the design luminosity (√s scaling assumed).
- Beam energy stability and accuracy should be as stated for the baseline machine.

Extending the reach of the ILC

- Upgrade option for study:
 - Power < 300 MW AC
 - New linac gradient 45 MV/m
 - $Q_0 = 2 \times 10^{10}$
- Post-TDR program:
 - Improve cavity gradient
 - increase positron yield
 - Cost effective production
- Flexibility: higher or lower energy, as informed by LHC results

				Reference	Straw-man TeV		
			no TF	TF	300MW 5% BS	300MW 10% BS	
	Ecm	GeV	500	500	1000	1000	
	gamma		4.89E+05	4.89E+05	9.78E+05	9.78E+05	
	N	e10	2.0	2.0	2.0	2.0	
$h \cap t$ tha II ()	frep	Hz	5.0	5.0	4.0	4.0	
	Nb		1312	1312	2280	2280	
	PB	MW	10.5	10.5	29.2	29.2	
	sigz	mm	0.3	0.3	0.25	0.15	
	enx	m	1.0E-05	1.0E-05	1.0E-05	1.0E-05	
	eny	m	3.5E-08	3.5E-08	3.0E-08	3.0E-08	
	betax	mm	11.00	11.00	30.00	18.00	
	betay	mm	0.48	0.20	0.25	0.15	
	sigx	nm	474.2	474.2	553.7	428.9	
	sigy	nm	5.9	3.8	2.8	2.1	
	theta_x	ur	43.1	43.1	18.5	23.8	
	theta_y	ur	12.2	18.9	11.1	14.3	
1V/m	Dx		0.3	0.3	0.1	0.1	
~ 0 .	Dy		24.6	38.2	18.7	18.7	
. 70	Upsilon		0.1	0.1	0.1	0.3	
av	Ngamma		1.7	1.7	1.4	1.7	
INNVI C	deltaB		4%	4%	5%	11%	
and the second							
	HDx		1.1	1.1	1.0	1.0	
GU avv	HDy		6.1	2.8	3.5	3.5	
	HDy		2.0	1.5	1.5	1.5	
$\mathcal{P}^{\mathbf{v}}$							
Ň	∆p/p e+	%	0.087	0.087	0.033	0.048	
	∆p/p e-	%	0.22	0.22	0.20	0.20	
	Pe+	%	22	22	30	30	
	P e-	%	80	80	80	80	
					1 555+24	2 595±21	
			7 515+22	1 165+24	1 905+34	2.362+34	
	Lyeo		1 47F+34	1.10L+34	2 89F+34	4 825+34	
	L (lonnald)			11.02.01	21002101		
	Simulation (noTF)						
n	Ngamma				1.443	1.753	
/11	deltaB(%)		4.30		5.284	9.823	
	L		1.49E+34		2.825E+34	4.76 E+34	
	L(1%)		62.5		62.1	50.2	
energy,	Simulation (TF)						
	Ngamma				1.444	1.759	
	deltaB(%)			4.33	5.258	9.826	
	L			2.05E+34	3.375E+34	5.639E+43	
	L(1%)			60.8	60.7	48.5	
	L(TR)/L(no)				1.19	1.18	
	····/· – ·····/						

ILC Parameter table

- Low power option L= 1.5×10^{34} cm⁻²s⁻¹ upgrade L= 3.0×10^{34} cm⁻²s⁻¹
- Low energy operation at 10 Hz (interleaved) and L=0.5×10³⁴ cm⁻²s⁻¹
- 1 TeV upgrade L=2.7×10³⁴ cm⁻²s⁻¹ upgrade L=4.3×10³⁴ cm⁻²s⁻¹

Version as of linearcollider.org

P and General Para	meters			IF = Trav	eling Focu	5		1.0			
				_					L Upgrade	E _m U	ograde
Centre-of-mass e	nergy	E _{cm}	GeV	200	230	250	350	500	500	1000	1000
										Al	815
Beam energy		Eteam	GeV	100	115	125	175	250	500	500	500
Lorentz factor		-		******	******	******	******	******	******	9,78E+05	9,78E+05
Collision rate		free	Hz	5	5	5	5	5	5	4	4
Electron linac rate		finac	Hz	10	10	10	5	5	5	4	4
Number of bunch	es	n.		1312	1312	1312	1312	1312	2625	2450	2450
Electron bunch po	opulation.	N.	×10**	2,0	2,0	2,0	2,0	2,0	2,0	1,74	1,74
Positron bunch po	opulation	N.,	×10**	2,0	2,0	2,0	2,0	2,0	2,0	1,74	1,74
Bunch separation	3 1 1	th	15	554	554	554	554	554	366	366	366
Bunch separation	×far	t _b f _p		720	720	720	720	720	476	476	476
Pulse current		Iteam	mA	5,8	5,8	5,8	5,8	5,8	8,8	7,6	7,6
RMS bunch lengt	h		mm	0.3	0.3	0.3	0.3	0.3	0.3	0,250	0.225
Electron RMS en	bearey somead	n/n	6	0.206	0 194	0 190	0.158	0.125	0.125	0.083	0.085
Docitron RMS and	arey coread	p/p	e .	0.187	0163	0.150	0 100	0.020	0.020	0.043	0.047
Electron polarisat	ion	P	8	80	80	80	80	80	80	80	80
Positron polarisat	ion	P.,	%	31	31	30	30	30	30	20	20
Marinental amitta			10	10	10	10	10	10	10	10	10
Pionizoniai emina	ace	x		10	10	10	10	10	10	10	10
vertical emittance		<i>y</i>	ren	33	33	32	32	32	30	30	30
IP horizontal beta	function	.*	mm	16	16	12	15	11	11	22,6	11,0
IP vertical beta fu	action (no TF)	·*	mm	0,48	0,48	0,48	0,48	0,48	0,48	0,25	0,23
IP RMS horizonta	d beam size	.*	7m	904	843	700	662	474	474	481	335
IP RMS veritcal b	eam size (no TF)	,*	700	93	8,6	8,3	7,0	59	59	2,8	2,7
Horizontal distrut	tion parameter	D.		02	0.2	0.3	0.2	0.3	0.3	0,1	0.2
Vertical disruptio	n parameter	D.		20.7	20,7	23.8	21.3	24.9	24.9	18.9	25.4
Horizontal enhans	cement factor	Here		11	11	1.1	11	12	1.2	1.0	1.0
6 Vertical enhancer	pent factor	Ha		5.7	5.7	6.0	5.8	6.1	6.1	3.6	41
Total enhancemen	nt factor	Hn		1.8	1.8	1.9	1.8	2.0	2.0	15	1.6
Geometric lumino	sity	Lpon	×10 ³⁴ cm ⁻¹ s ⁻¹	0,25	0,29	0,36	0,45	0,75	1,50	1,77	2,64
			x10 ³⁴ cm ⁻¹ s ⁻¹	0.46		0.69	0.83	10	395	171	433
Average beamstra	hhine parameter			0.013	0.016	0.021	0.032	0.063	0.063	0.130	0.207
Maximum beams	rahlune paramete			0.032	0.039	0.051	0.075	0.150	0.150	0.312	0.495
Average number of	of photons / partic			0.96	1.02	1.22	1.28	1.74	1.74	1.44	1.99
Average energy k	055	Ess	5	0,53	0,68	1,04	1,55	3,76	3,76	5,48	10,46
	100		1.000		-						
Luminosity		L	×10 ⁵⁶ cm ⁻² 5 ⁻¹	0,468	0,548	0,708	0,858	1,49	2,98	3,23	4,31
Coherent waist sh	III	w,	III III IIII	250	250	250	250	250	250	190	190
E Luminosity (inc.	waist shift)	L	×10- cm-5"	0.5	0,6	0,8	0,9	1.8	3,6	- 3,6	4.9
Praction of number	usary in cop 1%	Los /L		92,2%	0.70	04,1%	19,3%	02,3%	02,3%	- 60,2%	43,3%
Average energy k	755	LB	-10	0,61%	0,/8%	1,23%	1,75%	4,30%	4,3%	5,3%	99%
Number of pairs p	er bunch crossing	a pairs	*10	40.9	50,1	10,5	89,1	139.0	139,0	200,5	382,6

Conclusion

- ILC is well on track to deliver the TDR by end of 2012
 - 500 GeV machine with capability for scan $200 < \sqrt{s} < 500$ GeV
 - upgrade option for 1 TeV included with P < 300 MW
- Beyond TDR: research on
 - higher gradient
 - efficient e⁺-production (luminosity limitation)
 - cost
 - power efficiency