

Reminder on HZ Analysis for LOI (and beyond)

Roman Pöschl

3rd LC Forum DESY 8/2/2012 Higgs-strahlung Cross Section and Higgs Mass at the ILC

Golden Plated Channel at e⁺e⁻ Colliders

Sensitive to coupling at HZZ Vertex

Production Cross Section of SM Higgs Boson

Maximal at HZ production threshold

LOI Benchmark reaction:

Higgs Strahlung at $\sqrt{s} = 250$ GeV for $m_{_{\rm H}} = 120$ GeV

Letter of Intent in 2009 – Based on full detector simulation

Why golden plated Channel?

Higgs Mass and ZZH coupling by **Model Independent** measurement

Higgs Recoil Mass: $M_h^2 = M_{recoil}^2 = s + M_Z^2 - 2E_Z\sqrt{s}$

(Main) Background Processes Boson Pair Production

5

Background Rejection

<u>ILD</u>

 $\begin{array}{l} \mathsf{P}_{\mathrm{T,dl}} > 20 \; \mathrm{GeV} \\ 80 < \mathsf{M}_{\mathrm{dl}} < 100 \; \mathrm{GeV} \\ 0.2 < \mathrm{acop} < 3.0 \\ \Delta \; \mathsf{P}_{\mathrm{Tbal.}} > 10 \; \mathrm{GeV} \\ |\mathrm{cos} \; \theta \;_{\mathrm{miss.}}| < 0.99 \\ 115 < \mathsf{M}_{\mathrm{recoil}} < 150 \; \mathrm{GeV} \\ \mathrm{Dedicated} \; \mathrm{cuts} \; \mathrm{for} \; \mathrm{radiative} \\ \mathrm{events} \\ \mathrm{Multivariate} \; \mathrm{Analysis} \end{array}$

- Relaxed constraint on dilepton Mass
- Cuts more closely 'tailored' to background

Signal/Background > 30%

Results (see also LC Note LC_PHSM-2009-006)

SM prediction of cross section

3rd LCForum DESY Hamburg

Η

e

Table 6: Results based on NB beam parameters, assuming a beam polarization of $(e^-: -80\%, e^+: +30\%)$, comparing with those of RDR beam parameters.

Currently best "fast" reaction tool for ILC studies – Extendable? Replies to "urgently" needed studies (according to benchmark note)

H. Li LPSC Grenoble

Higgs BR in light Higgs mass region

Ecm=250 GeV, L=250 fb-1, Pol(e+,e-)=(+30%, -80%) or (-30%, +80%)(ww)

 σ ZH=2.5% uncertainty is also included

Summary of current Higgs study

BR precision	Ecm	250 GeV (LOI)	350 GeV	250 GeV	1 TeV (DBD)
H decay	BR	Mh120 GeV	Mh120 GeV	Mh130 GeV	Mh120 GeV
H→bb	66.5%	vvH, qqH, llH	vvH, qqH, llH	To be update	Required vvH
Н→сс	2.9%	vvH, qqH, llH	vvH, qqH, llH	To be update	Required vvH
H→gg	8.2%	vvH, qqH, llH	vvH, qqH, llH	To be update	Required vvH
H→WW*	13.6%	vvH <i>,</i> 4j	No	vvH <i>,</i> 4j	Required vvH
Η→μμ	0.02%	for DBD	No	No	Required vvH
Η→ττ	6.8%	To be done	No	No	No
H→ZZ*	1.5%	start vvH, 4j	No	No	No
Н→үү	0.2%	Constantino	No	No	No
H→Zγ	0.1%	Constantino	No	No	No

Need to do with qqH for WW, ZZ, $\tau\tau$...

Recoil mass study should also be tested with several masses

Feb. 07. 2012

vvH @ 1 TeV for DBD

DBD benchmark process: σ*BR for Hµµ, bb, cc, WW, gg

Main produced through W-fusion

H→bb, cc, gg (Hadronic decay) Di-jet reconstruction Same strategy as LOI 250 GeV

H→µµ: Muon ID H→WW*: (4j, lv+2j, 2l+2v)

ee \rightarrow II for H \rightarrow µµ

Summary and Outlook

- LOI result: Precision of coupling of Higgs Boson to SM Vector Bosons ~1-2%
 High sensitivity to deviations from SM prediction
- HZ Analysis for MH = 120 GeV (a) \sqrt{s} = 250 GeV more actual than ever Due to increasing interest in low mass Higgs we will publish the LC Note to arXiv right after this session
- (Fast simulation) tools at hand to study influence on changing collider parameters Proven already to be powerful for process SB2009 -> NB in 2011 Great work by H. Li
- Higgs BR results Δ BR/BR(bb) ~ 3% Δ BR/BR(cc) ~ 9% Δ BR/BR(gg) ~ 10% Error includes $\Delta\sigma_{HZ}$
- Higgs BR analysis will be extended to 1 TeV

ee-> vvH is benchmark process!

Backup Slides

Model Independent ↔ Model Dependant Analysis

3rd LCForum DESY Hamburg

Sources of Bremsstrahlung

Energy loss by Passive Material

3rd LCForum DESY Hamburg

Influence of Accelerator Parameters

Uncertainties of incoming beams are dominant source of Statistical Error (even in Electron Channel)

Higgs-strahlung is key process for optimisation of ILC design

Angular Distributions for 250 and 350 GeV

HZ and ZZ Background

Better Signal/Background Separation at higher Energies

ZH Signal: Z retrieves its Goldstone nature ZZ Background: Z retrieves its photonic nature

$H \rightarrow WW^*$ study

vvH, H→WW* at 1 TeV as DBD benchmark process

H→WW* →4j at Ecm=250 GeV, L=250 fb-1, (e+, e-)=(-0.3, +0.8)

1. Forced 4 jets clustering

2. Jet paring with M_{ii} as one on-shell W and M_{4i} as H

