Distinguishing contact interaction models at the ILC with polarized beams

Andrei Tsytrinov

The Abdus Salam ICTP Affiliated Centre, Technical University of Gomel, Belarus

> 3rd LCFORUM Meeting, 7-9 February 2012, DESY Hamburg, Germany

with A.A. Pankov (Gomel & Trieste) & N. Paver (Trieste)

Outline

- Variety of New Physics Scenarios (NP)
- Parameterization of NP (compositeness, Z', W', LQ, $\tilde{\nu}$, KK, G_n ,...) in

terms of four-fermion CI

- NP indirect effects at e⁺e⁻ ILC - Processes: $e^+e^- \rightarrow \overline{f} f$ ($f = e, \mu, \tau, c, b$)
- Discovery reach on NP parameters
- Identification reach of contact interactions at the ILC (pair-wise comparison and model independent approaches)
- Observables: polarized differential distributions

Introduction

It is generally expected that NP beyond the SM will manifest itself at future colliders such as the LHC and ILC either:

- directly, as in the case of new particle production, e.g., Z' and W' vector bosons, SUSY or Kaluza-Klein (KK) resonances, or
- **indirectly** through *deviations* of observables from the SM predictions.

In the case of **indirect** discovery many different NP scenarios may lead to the **same** or **very similar** experimental signatures. These NP scenarios predict *new particle exchanges* which can lead to **CI** below direct production threshold.

Various New Physics possibilities

- Composite models
- Heavy Z'exchanges
- Scalar and vector leptoquarks
- Sneutrino exchange
- Anomalous Gauge Couplings (AGC)
- Exchange of gauge boson KK towers
- Virtual KK graviton exchange (ADD)
- etc.

If New Physics effects are discovered, it is crucial to have good search strategies to determine its origin.

Proposed techniques:

- Monte Carlo best fits (G.Pasztor & M.Perelstein, hep-ph/0111471)
- Integrated cross sections weighted by Legendre polynomials (*T.Rizzo*, JHEP 0210 (2002))
- ILC:
 - Center-Edge Asymmetries A_{CE} and A_{CE,FB}: offer a possibility of easily discriminating spin-1 from spin-2 exchanges

(P. Osland, N. Paver, A.A. Pankov, P.R.D 68 (2003);

A.A. Pankov, N. Paver, P.R.D 72 (2005))

— polarized differential distributions for $e^+e^- \rightarrow \overline{f} f$

(A.A. Pankov, N. Paver, A.T., P.R.D 73 (2006); P.R.D 75 (2007))

• LHC:

— A_{CE} at LHC

(E.W. Dvergsnes, P. Osland, N. Paver & A.A. Pankov, P.R.D 69 (2004); IJMP A 20 (2005))

A.T., A. Pankov, N. Paver, P. Osland P.R.D 78 (2008); 79 (2009); 82 (2010); 84 (2011)

Here, we will consider the problem of how to **distinguish** the potential New Physics scenarios from each other at the ILC. In particular, we will **discuss such a technique** based on the polarized angular distributions which offer a way to uniquely identify spin-2 graviton exchange, parameterized by CI (operator of dim. 8) as well as "conventional" (dim 6) CI.

Nonstandard Scenarios

- Framework of effective Lagrangians (expansion in s/Λ^2)
- "Conventional" (dim-6) four-fermion contact interactions (CI) [compositeness]:
- effective Lagrangian:

$$\mathcal{L}^{\mathrm{CI}} = 4\pi \sum_{\alpha,\beta} \frac{\eta_{\alpha\beta}}{\Lambda_{\alpha\beta}^2} (\bar{e}_{\alpha}\gamma_{\mu}e_{\alpha}) (\bar{f}_{\beta}\gamma^{\mu}f_{\beta})$$
$$\eta_{\alpha\beta} = \pm 1,0; \ \alpha,\beta = \mathrm{L,R}.$$

Operators of dim-6

[CERN-PH-EP-2011-198]

- Can describe also exchanges of heavy Z', W', Leptoquarks, etc.
- Current limits on "compositeness" scales [LHC]: Λ_{llqq} > 10 TeV

- ADD scenario: Gravity in "large" compactified extra dimensions (gauge hierarchy)
- Gravity only can propagate in the full 4+N space

• Virtual exchange of the graviton KK excitation states is governed by the effective Lagrangian (similar to dim-8 CI):

$$\mathcal{L}^{\text{ADD}} = i \frac{4\lambda}{\Lambda_{H}^{4}} T^{\mu\nu} T_{\mu\nu},$$

where Λ_H is the cut-off scale (convention of *Hewett*), $\lambda = \pm 1$.

• current lower limit [LHC]: $\Lambda_H > 1.7 \text{ TeV}$

• TeV ⁻¹ - scale extra dimensions

Also SM gauge bosons may propagate in the additional dimensions: exchange of γ and Z KK excitations. Effective (contactlike) interaction:

$$\begin{split} \mathcal{L}^{\mathrm{TeV}} &= -\frac{\pi^2}{3M_C^2} \left[Q_e Q_f(\bar{e}\gamma_\mu e)(\bar{f}\gamma^\mu f) + \right. \\ &\left. + (g_{\mathrm{L}}^e \bar{e}_{\mathrm{L}}\gamma_\mu e_{\mathrm{L}} + g_{\mathrm{R}}^e \bar{e}_{\mathrm{R}}\gamma_\mu e_{\mathrm{R}}) \times (g_{\mathrm{L}}^f \bar{f}_{\mathrm{L}}\gamma^\mu f_{\mathrm{L}} + g_{\mathrm{R}}^f \bar{f}_{\mathrm{R}}\gamma^\mu f_{\mathrm{R}}) \right]. \end{split}$$

 $M_C \gg M_{W,Z}$: inverse of the compactification radius

Discovery reach

- Observables: polarized angular distributions $d\sigma/d\cos\theta$
- Processes: $e^+e^- \rightarrow \bar{f}f$, (s,t,u- channels)
- $d\sigma \propto |SM + NewPhysics|^2$
- Assumption: no deviation from the SM is observed within the experimental accuracy.
- **Deviations** of observables from the SM predictions:

$$\Delta(\mathcal{O}) = \frac{\mathcal{O}(SM + NP) - \mathcal{O}(SM)}{\mathcal{O}(SM)}, \qquad \mathcal{O} = d\sigma/d\cos\theta$$

- deviations must be compared to foreseen experimental uncertainties $\delta \mathcal{O}$ [statistical plus systematic]. Discovery reach: $\chi^2(\mathcal{O}) = \sum_{\{P^-, P^+\}} \sum_{\text{bins}} \left(\frac{\Delta(\mathcal{O})^{\text{bin}}}{\delta \mathcal{O}^{\text{bin}}}\right)^2$.
- Constraints on Λ_{H} , Λ 's, M_{C} [expected discovery reaches] from:

$$\chi^2(\mathcal{O}) \le 3.84 \quad (95\% \text{ C.L.})$$

Experimental inputs:

Bhabha and Møller scattering ($|\cos \theta| < 0.9$, $\epsilon \simeq 100\%$, bin width:

$$\begin{aligned} \Delta \cos \theta &= 0.2 \); \\ \mu^{+} \mu^{-}, \ \tau^{+} \tau^{-} \ (|\cos \theta| < 0.98, \ \epsilon = 95\%); \\ \bar{c}c \ (\epsilon = 35\%); \ \bar{b}b \ (\epsilon = 60\%) \end{aligned}$$

radiative corrections included:

 $e^+e^- \rightarrow \overline{f} f \ (ZFITTER \oplus ZEFIT)$ [D. Bardin et al., S. Riemann] $e^+e^- \rightarrow e^+e^-$ (structure functions approach)

$$\delta P^{\pm}/P^{\pm} = 0.2\%$$
, $\delta \mathcal{L}_{\rm int}/\mathcal{L}_{\rm int} = 0.5\%$.

95% C.L. discovery reaches (in TeV). Left and right entries refer to the polarization configurations $(|P^-|, |P^+|)=(0,0)$ and (0.8,0.6), respectively. $\sqrt{s} = 0.5$ TeV, $\mathcal{L}_{int} = 100 f b^{-1}$

	Process				
Wodel	$e^+e^- \rightarrow e^+e^-$	$e^+e^- \rightarrow l^+l^-$	$e^+e^- \rightarrow \overline{b}b$	$e^+e^- \rightarrow \bar{c}c$	
Λ_H	4.1; 4.3	3.0; 3.2	3.0; 3.4	3.0; 3.2	
Λ_{VV}^{ef}	76.2; 86.4	89.7; 99.4	76.1; 96.4	84.0; 94.1	
Λ^{ef}_{AA}	47.4; 69.1	80.1; 88.9	76.7; 98.2	76.5; 85.9	
Λ^{ef}_{LL}	37.3; 52.5	53.4; 68.3	63.6; 72.7	54.5; 66.1	
Λ^{ef}_{RR}	36.0; 52.2	51.3; 68.3	42.5; 71.2	46.3; 66.8	
Λ^{ef}_{LR}	59.3; 69.1	48.5; 62.8	51.3; 68.7	37.0; 57.7	
Λ^{ef}_{RL}	$\Lambda^{ee}_{RL} = \Lambda^{ee}_{LR}$	48.7; 63.6	46.8; 60.1	52.2; 60.7	
M_C	12.0; 13.8	20.0; 22.2	6.6; 10.7	10.4; 12.0	

See also S.Riemann, T.Rizzo, S.Godfrey.

Generalized approach: Model-independent analysis of CI – unpolarized beams

• Bhabha scattering: $\chi^2(\Lambda_{RR}, \Lambda_{LL}, \Lambda_{LR}) \le 7.82$ (95% C.L.)

LEP vs. unpolarized ILC (0.5 TeV, 100 fb⁻¹):

A. Tsytrinov :: "Distinguishing Cl..." :: 3-d LCForum, 7-9 Feb. 2012, DESY

ILC with longitudinally polarized beams

A. Tsytrinov :: "Distinguishing Cl..." :: 3-d LCForum, 7-9 Feb. 2012, DESY

^{ERR} (TeV⁻²)

Model-independent analysis of CI: role of polarization

• Bhabha scattering: $\chi^2(\Lambda_{RR}, \Lambda_{IL}, \Lambda_{IR}) \leq 7.82 \ (95\% \text{ C.L.})$

 $\square \begin{array}{c} P^{-} = 0; \\ P^{+} = 0; \end{array} \qquad \square \begin{array}{c} |P^{-}| = 0.8; \\ P^{+} = 0; \end{array} \qquad \square \begin{array}{c} |P^{-}| = 0.8; \\ |P^{+}| = 0.6; \end{array}$

A. Tsytrinov :: "Distinguishing Cl..." :: 3-d LCForum, 7-9 Feb. 2012, DESY

Model-independent bounds on CI parameters at 95% C.L. vs. luminosity for ILC (0.5 TeV)

Distinction among the New Physics models

- Generic consideration processes with s-, t-, u-channels identification reaches
- Assumption: One of the models, say the ADD, is found consistent with experimental data with some value of Λ_H
- Deviations of observables from the ADD model prediction due to other models (say, the **CI** ones):

$$\tilde{\Delta}(\mathcal{O}) = \frac{\mathcal{O}(CI) - \mathcal{O}(ADD)}{\mathcal{O}(ADD)}$$

• assess the level at which ADD is distinguishable from the other models

Example: CI=VV (ADD vs. VV)

Region of confusion of ADD with VV model determined by:

$$\tilde{\chi}^{2}(\mathcal{O}) = \sum_{\{P^{-}, P^{+}\}} \sum_{\text{bins}} \left(\frac{\tilde{\Delta}(\mathcal{O})^{\text{bin}}}{\tilde{\delta}\mathcal{O}^{\text{bin}}} \right)^{2} \le 3.84 \quad (95\% \text{ C.L.})$$

$$\mathcal{L}_{e^+e^-}=100~{\rm fb}^{-1}$$
, $\sqrt{s}=0.5~{\rm TeV}.$

One can find a maximal absolute value of the scale parameter λ/Λ_H^4 for which the VV model hypothesis is expected to be **excluded** at the 95% C.L. for **any value of the CI parameter** η/Λ_{VV} . We call this Λ_H^{VV} as **exclusion reach** of the VV model.

ID reach for ADD model (pair-wise comparison)

Identification reach:

 $\Lambda_{H}^{\mathrm{ID}} = min\{\Lambda_{H}^{\mathrm{VV}}, \, \Lambda_{H}^{\mathrm{AA}}, \Lambda_{H}^{\mathrm{RR}}, \, \Lambda_{H}^{\mathrm{LL}}, \, \Lambda_{H}^{\mathrm{LR}}, \, \Lambda_{H}^{\mathrm{TeV}}\} \ \rightarrow \Lambda_{H}^{\mathrm{ID}} = 2.5(3.1) \text{ TeV}.$

ID reach for ADD, TeV and CI models

21

Model-independent CI considerations

General case: for given f CI interaction could be any linear combination of individual models $[\Lambda_{LL}, \Lambda_{RR}, \Lambda_{RL}, \Lambda_{LR}]$

All $\Lambda_{\alpha\beta}$ and Λ_{H} simultaneously in deviation

$$\tilde{\Delta}(\mathcal{O}) = \frac{\mathcal{O}(\Lambda_{LL}, \Lambda_{RR}, \Lambda_{RL}, \Lambda_{LR}) - \mathcal{O}(\Lambda_H)}{\mathcal{O}(\Lambda_H)}; \quad \tilde{\chi}^2(\mathcal{O}) = \sum_{\{P^-, P^+\}} \sum_{\text{bins}} \left(\frac{\tilde{\Delta}(\mathcal{O})^{\text{bin}}}{\tilde{\delta}\mathcal{O}^{\text{bin}}}\right)^2$$

Confusion region in multi-parameter space:

$$\tilde{\chi}^2 \le \tilde{\chi}^2_{\rm CL}$$

Here, for 95% C.L.: Bhabha scattering: $\tilde{\chi}_{CL}^2 = 7.82$ Annihilation $\bar{f}f$ channels $(f = \mu, \tau, c, b)$: $\tilde{\chi}_{CL}^2 = 9.49$

Model-independent ID reach for ADD model

Two-dimensional projection of the 95% C.L. confusion region onto the planes $(\eta_{\rm LL}/\Lambda_{\rm LL}^2, \lambda/\Lambda_H^4)$ (left panel) and $(\eta_{\rm LR}/\Lambda_{\rm LR}^2, \lambda/\Lambda_H^4)$ (right panel) obtained from Bhabha scattering with unpolarized beams (dot-dashed curve) and with both beams polarized (solid curve).

95% CL identification reach on ADD model parameter Λ_H obtained from $e^+e^- \rightarrow \bar{f}f$ at two configurations of polarizations: $(|P^+|, |P^-|)=(0,0)$ and (0.8, 0.6) respectively.

$\Lambda_{H}^{\mathrm{ID}}$ (TeV)	$e^+e^- \rightarrow e^+e^-$	$\begin{array}{c} Proces \\ e^+e^- \to l^+l^- \end{array}$	$e^+e^- \to \bar{c}c$	$e^+e^- ightarrow ar{b}b$
$\sqrt{s}=0.5$ TeV, $\mathcal{L}_{ m int}=10^2 f b^{-1}$	2.2; 2.9	2.3; 2.3	2.3; 2.4	2.6; 2.9
$\sqrt{s} = 1.0$ TeV, $\mathcal{L}_{\mathrm{int}} = 10^3 f b^{-1}$	5.0; 6.4	4.9; 5.1	5.1; 5.3	5.8; 6.2

LHC vs. ILC

Identification reach on $\Lambda_{\rm H}$ (in TeV) at 95% C.L. from $p + p \rightarrow l^+ l^- + X$

at LHC and from $e^+e^- \rightarrow f \bar{f}$ $(f = e, \mu, \tau, c, b)$ at ILC.

Collider	Λ_{H}^{+}	Λ_{H}^{-}
LHC 100 fb^{-1}	4.8	5.0
LHC 300 fb^{-1}	5.4	5.9
$ILC(0.5 \text{ TeV}) 500 \text{ fb}^{-1}$	4.8	
$ILC(1 \text{ TeV}) \ 1000 \text{ fb}^{-1}$	8.8	

Identification reach on Λ_{H} obtained from *combination of all final fermions* at ILC.

ILC (0.5 TeV, 500 fb⁻¹) is complementary to LHC (14 TeV, 100 fb⁻¹)

ILC (1 TeV, 1 ab⁻¹) allows to improve those bounds obtained at LHC.

ILC with low energy (250 GeV, 350 GeV)

∧_{*H*} > 1.7 TeV

Λ_{llqq} > 10 TeV [CERN-PH-EP-2011-198]

ILC with 100 fb⁻¹

LHC 14 TeV, 100 fb⁻¹

 $\Lambda_{\rm H}$ ~ 5 TeV

• Identification is impossible

Λ_{CI} ~ 20 – 35 TeV

• Improvement of constraints and ID CI is possible

Conclusions

• If New Physics effects are discovered, it is crucial to have good search strategies to determine its origin.

• We have considered the problem of how to distinguish the potential New Physics scenarios from each other at the ILC by using polarized differential distribution for fermion pair production processes.

• Role of e+ e- polarization is quite important.

spare transparencies

A. Tsytrinov :: "Distinguishing Cl..." :: 3-d LCForum, 7-9 Feb. 2012, DESY