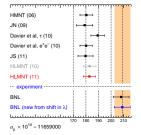

Magnetic moment $(g - 2)_{\mu}$ and new physics complementarity between $(g - 2)_{\mu}$ and collider physics

Dominik Stöckinger, TU Dresden

LC Forum, 7/2/2012, Hamburg

< 🗇 > < 🖃 >



Constraints on new physics and complementarity SUSY

Alternatives to SUSY

errors:

$$\begin{split} & \text{exp} \ (5.4)_{stat} (3.3)_{syst} \\ & \text{SM} \ (4.2)_{vp,data} (2.6)_{lbl,models} \end{split}$$

both will improve in future

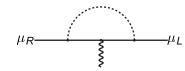
Full SM: $a_{\mu} \times 10^{10} - 11659000$

dR08:	178.5(5.1)	(3.6 σ)
JN09:	179.0(6.5)	(3.2σ)
HLMNT09:	177.3(4.8)	(4.0σ)
Detal09:	183.4(4.9)	(3.2σ)
JS11:	179.7(6.0)	(3.3σ)
HLMNT11:	182.8(4.9)	(3.3σ)
BDDJ11:	175.4(5.3)	(4.1σ)

Exp:

BNL06: ... 208.9(6.3)

э


Future experiments at Fermilab and JParc (N. Saito)

	BNL-E821		J-PARC
Muon momentum	3.09 GeV/c		0.3 GeV/c
gamma	29.3		3
Storage field	B=1.45 T		3.0 T
Focusing field	Electric quad		None
# of detected μ+ decays	5.0E9	1.8E11	1.5E12
# of detected μ- decays	3.6E9	-	-
Precision (stat)	0.46 ppm	0.1 ppm	0.1 ppm

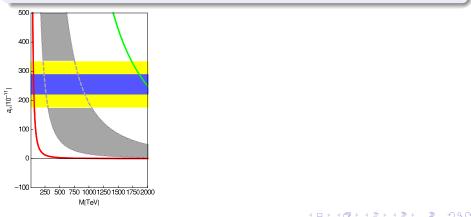
< 回 > < 三 > < 三 >

э.

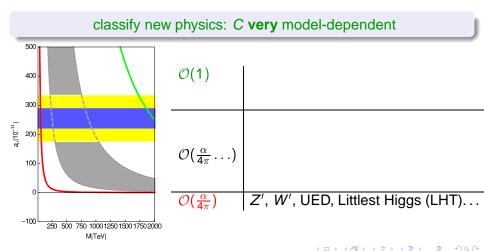
New Physics: Why is a_{μ} special?

< ロ > < 同 > < 回 > < 回

CP- and Flavour-conserving, chirality-flipping, loop-induced

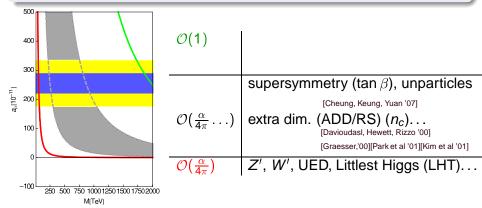


In the following:


- new physics contributions model-dependent
- constraints complementary to LHC, flavour physics, LC

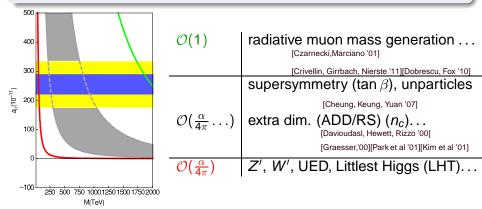
$$m_{\mu} \leftrightarrow a_{\mu}$$
 relation: $\delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2, \quad C = \frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}}$

classify new physics: C very model-dependent


$$m_{\mu} \leftrightarrow a_{\mu}$$
 relation: $\delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2$, $C = \frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}}$

Magnetic moment $(g - 2)_{\mu}$ and new physics — complementarit New Physics contributions are very model-dependent

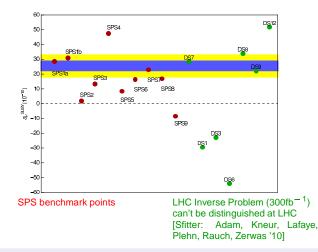
$$m_{\mu} \leftrightarrow a_{\mu}$$
 relation: $\delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2$, $C = \frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}}$



Magnetic moment $(g-2)_{\mu}$ and new physics — complementarit New Physics contributions are very model-dependent

< ロ > < 同 > < 回 > < 回 >

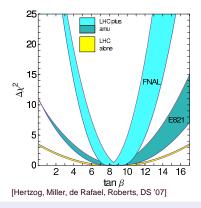
$$m_{\mu} \leftrightarrow a_{\mu}$$
 relation: δa_{μ} (N.P.) = $\mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2$, $C = \frac{\delta m_{\mu}$ (N.P.)}{m_{\mu}}


classify new physics: C very model-dependent

Magnetic moment $(g - 2)_{\mu}$ and new physics — complementarit New Physics contributions are very model-dependent

< ロ > < 同 > < 回 > < 回 >

a_{μ} central complement for SUSY parameter analyses



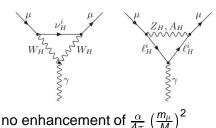
- a_{μ} sharply distinguishes SUSY models
- breaks LHC degeneracies (before Linear Collider!)

Magnetic moment $(g - 2)_{\mu}$ and new physics — complementarit

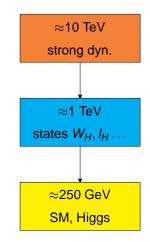
Constraints on new physics and complementarity

a_{μ} central complement for SUSY parameter analyses

 $\tan \beta = \frac{v_2}{v_1}$ central for understanding EWSB


LHC: $(\tan \beta)^{\text{LHC},\text{masses}} = 10 \pm 4.5$ bad [Sfitter: Lafaye, Plehn, Rauch, Zerwas '08, assume SPS1a]

 a_{μ} improves tan β considerably Also complementary to LC!


vision: test universality of tan β , like for $\cos \theta_W = \frac{M_W}{M_Z}$ in the SM: $(t_\beta)^{\mathbf{a}_\mu} = (t_\beta)^{\text{masses}} = (t_\beta)^H = (t_\beta)^b$? Littlest Higgs (with T-parity)

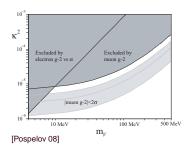
Bosonic SUSY

- partner states, same spin
- cancel quadratic div.s
- T-parity⇒lightest partner stable

[Georgi; Arkani-Hamed,Cohen,Georgi] Concrete LHT model: [Cheng, Low '03] [Hubisz, Meade, Noble, Perelstein '06]

 $a_{\mu}^{LHT} < 1.2 \times 10^{-10}$ [Blanke, Buras, et al '07] Clear-cut prediction, sharp distinction from SUSY possible

Magnetic moment $(g-2)_{\mu}$ and new physics — complementarit


What if the LHC does not find new physics -

"Dark force"? [Pospelov, Ritz...]

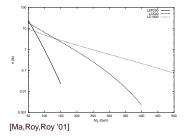
- very light new vector boson
- very weak coupling
- motivated e.g. by dark matter, not by EWSB

$C \propto 10^{-8}, M < 1 {\rm GeV}$

- a_{μ} can be large
- could be "seen" by a_µ-exp.

< 回 > < 三 > < 三

Flavour-dependent Z'?

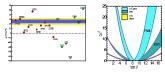

Yet another possibility to hide new physics at colliders Gauged $L_{\mu} - L_{\tau}$ [Ma,Roy,Roy'02][Heeck,Rodejohann'11]

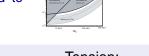
- flavour-dependent Z'
- hidden at LEP, even for g' = 1, $M_{Z'} = 200 \text{ GeV}$

$$C \sim C_{SM,weak}, M_{Z'} \sim M_Z$$

• explains a_{μ} for

 $M_{Z'}/g'pprox 200~{
m GeV}$


- reach for g' = 1:
 - LHC (10fb⁻¹): 130GeV
 - LHC (100fb⁻¹): 350GeV
 - [Heeck,Rodejohann'11]
 - LC (0.5TeV): 300GeV



< D > < A > < B > < B < 4 < B < 4 < B < 4 < B < 4 < B < 4 < B < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 < C < 4 <

Summary

- $a_{\mu}^{\mathrm{Exp}} a_{\mu}^{\mathrm{SM}} pprox (25 \pm 8) imes 10^{-10}$ future promising!
- $a^{
 m N.P.}_{\mu}$ very model-dependent, typically $\mathcal{O}(\pm 1 \dots 50) imes 10^{-10}$
 - break degeneracies
 - parameter sensitivity complementary to LHC/LC
 - sensitive to models hard to detect at colliders

Mass re	each:		Tension:	
SUSY	$(t_{eta} \le 50)+a_{\mu}:$	$m_{ ilde{\mu},\chi} \leq 600 { m GeV}$	$oldsymbol{a}_{\mu}$	LHC bounds
rad.ma	ass gen.+ a_{μ} :	$M_{\rm NP} \leq 2 {\rm TeV}$	finetuning	<i>m_h</i> = 125 GeV

- 4 E b

Hadronic vacuum polarization contributions: $(692.3(4.2) \times 10^{-10})$

- consensus on methods final result/error depends on exp data
- alternative: τ -data ($\tau \rightarrow \nu + W^* \rightarrow \nu$ +hadrons)
- recent years: convergence of theoretical determinations

- - E → -

Hadronic vacuum polarization contributions: $(692.3(4.2) \times 10^{-10})$

Recent progress:

new exp data (CMD2, SND, KLOE, B-factories)

 \Rightarrow significantly more precise and reliable!

reconciled with *τ*-based results

 \rightarrow confirmation of e^+e^- -based evaluations

[Davier et al '10][Jegerlehner, Szafron '11][Benayoun + Jegerlehner '11]

< 🗇 > < 🖻 > < 🖻 >

Hadronic light-by-light contributions Cannot be computed from first principles — Error difficult to assess!

[Bijnens, Prades '07]	10.0 ± 4.0
[Melnikov, Vainshtein '03]	13.6 ± 2.5
[Jegerlehner '08]	11.4 ± 3.8
[Jegerlehner, Nyffeler '09]	11.6 ± 4.0
[Prades, Vainshtein, de Rafael '08]	10.5 ± 2.6

- "Glasgow" consensus: combine methods, inflate errors
- Promising new approaches: lattice, Dyson-Schwinger

$a_{\mu}(\pi,\eta,\ldots)$	114	(13)	
a_{μ} (pseudovectors)	15	(10)	
a_{μ} (scalars)	-7	(7)	
a_{μ} (dressed π -loop)	- 19	(19)	

1/N_C-expansion: all terms LO, except last term NLO

error estimates: based on comparing different evaluations and enlarging error (reason for adding errors in quadrature, although in original calculations error were added linearly), e.g. $a_{\mu}(\pi, \eta, \ldots) = 85(13)_{BPP}, 114(10)_{MV} \rightarrow 114(13)_{PdRV}$ (splitting of contributions is model-dependent)

Discussion: reconcile LHC bounds with a_{μ}

- a_{μ} vs LHC-bounds on squarks/gluinos
 - Even within the CMSSM: heavy masses + large $\tan \beta$
 - Beyond the CMSSM:
 - sleptons lighter than squarks
 - compressed SUSY, a_{μ} from subleading contributions, ...
- a_{μ} vs $m_{h} = 125 \text{ GeV}$
 - still possible in CMSSM, e.g. $m_{1/2}=1800, m_0=1080, A_0=860, t_eta=48$ [Buchmüller et al]
 - beyond CMSSM, see above

- - E → -

The tension is increasing

 a_{μ} LHC bounds finetuning $m_{h} = 125 \text{ GeV}$

- prefer low/high SUSY masses, difficult to reconcile (and with dark matter, b-physics)
- increasingly interesting to pin down a_{μ} more precisely!
- Challenge: is there a possibility to reconcile everything in SUSY (non-MSSM?)