SUSY Searches at the LHC

Isabell-A. Melzer-Pellmann on behalf of the ATLAS and CMS Collaborations

3rd LC Forum DESY Hamburg, 2012

HELMHOLTZ | GEMEINSCHAFT

- Hadronic searches
- Leptonic searches
- Searches with photons
- Long-lived particles
- Summary and outlook

- SUSY has solutions to (almost) all open questions:
 - Unification with gravity (Superstring theory)
 - Unification of the gauge couplings
 - Solution of the hierarchy problem
 - Candidate for dark matter particle

- SUSY relates bosons to fermions and vice versa
 - No SUSY particles with same masses as SM partners found → broken symmetry
 - SUSY partners heavier than SM particles, but expected to be at least (partly) lighter than 1TeV

Search them at the LHC!!!

LHC, ATLAS and CMS

Very successful running in 2011
 ~5.7 fb⁻¹ delivered per experiment
 Most analyses presented here based on smaller subset of data

- Topology based searches, not optimized for any particular SUSY model
- Most searches probe tails of E_T^{miss} distribution
- Try to cover as much phase space as possible (e.g. as low lepton p_T as possible)
- Estimate backgrounds from data (data-driven bkg estimate) to minimize reliance on MC (e.g. for detector (mis)reconstruction effects)
- Exclude area in common benchmark scenarios, e.g. cMSSM and simplified models

0 leptons	1 lepton	OSDL	SSDL	≥3 lep.	2 γ	1 γ + 1 lep.
Jets + E _T ^{miss} (+special variables)	Single lepton+ jets+E _T ^{miss}	Opposite sign di- leptons+ jets+E _T ^{miss}	Same-sign di-leptons + jets +E _T ^{miss}	Multi- leptons	Di-photon +jets +E _T ^{miss}	Photon +lepton +E _T ^{miss}

 Add b-tag requirement in order to be more sensitive to light 3rd generation squarks

- The CMS Experiment
- Hadronic searches
- Inclusive hadronic analysis
 - Search with many jets
 - Direct sbottom production
- Leptonic searches
- Searches with photons
- RPV SUSY
- Long-lived particles

Signature:

Many jets and large missing transverse energy

- Least model-dependent analysis
- Large backgrounds:
 - Z+jets with $Z \rightarrow vv$ (irreducible)
 - W+jets and ttbar with W \rightarrow Iv and lost lepton or $\tau \rightarrow$ hadrons + v
 - QCD multijet events with large missing transverse momentum due to:
 - Leptonic decays of heavy flavor hadrons inside jets
 - Jet energy mis-measurement
 - Instrumental noise
 - Non-functioning detector components

Phys. Lett. B698:196-218 (2011) CMS PAS SUS-11-004

Baseline selection

- At least 3 jets with p_T^{jet} > 50 GeV and |η| < 2.5
 |ΔΦ(J_{1,2}, H_T^{miss})| > 0.5 and |ΔΦ(J₃, H_T^{miss})| > 0.3 to veto events where H_T^{miss} is aligned in transverse plane with one of the 3 leading jets
- Veto on isolated muons and electrons
- → H_T > 350 GeV
- → H_T^{miss} > 200 GeV

H/_⊣ (GeV)

CMS PAS SUS-11-004

QCD Background Estimation

- Most difficult background, derived here by 'Rebalance & Smear' method:
 - Rebalance all jets to overall p_T balance (=kind of `generator level jet', robust against seed jet mis-measurements and non-QCD processes)
 - Smear p_T of each seed jet by a factor derived from jet resolution distribution (from simulation, and corrected for data/MC differences)
- Smearing of the jets results in artificially created E_T^{miss} used to estimate the real E_T^{miss} distribution

CMS PAS SUS-11-004

Method	Baseline H _T > 350 GeV and H _T ^{miss} > 200 GeV	Medium H _T > 500 GeV and H _T ^{miss} > 350 GeV	High H _T H _T > 800 GeV and H _T ^{miss} > 200 GeV	High H_T^{miss} H _T > 800 GeV and H _T ^{miss} > 500 GeV
$Z \rightarrow vv$ from γ +jets	376.3 ± 12.3 ± 79.2	42.6 ± 4.4 ± 8.9	24.9 ± 3.5 ± 5.2	$2.4 \pm 1.1 \pm 0.5$
tt/W \rightarrow e, μ +X	$243.5 \pm 19.8^{+30.0}$ -30.9	12.7 ± 3.3 ± 1.5	$22.5 \pm 6.7^{+3.0}_{-3.1}$	$0.8 \pm 0.8 \pm 0.1$
tt/W $\rightarrow \tau_{hadr}$ +X	263 ±8 ± 7.4	17 ± 2 ± 0.7	18 ± 2 ± 0.5	0.73 ± 0.73 ± 0.04
QCD	30.9 ±35.2 ^{+16.6} -6.2	1.3 ±1.3 ^{+0.6} -0.4	13.5 ±4.1 ^{+7.3} -4 3	0.09 ±0.31 ^{+0.05} -0.04
Total background	927.5 ±103.1	73.9 ±11.9	79.4 ±12.2	4.6 ±1.5
Observed in data	986	78	70	3

3rd LC Forum, DESY/Hamburg 2012

Isabell Melzer-Pellmann

- Simplified models (on-shell effective theory): intermediate step between a complete theory and experimental signature
- Use limited set of new hypothetical particles and decays to produce a given topological signature

3rd LC Forum, DESY/Hamburg 2012

- Simplified models (on-shell effective theory): intermediate step between a complete theory and experimental signature
- Use limited set of new hypothetical particles and decays to produce a given topological signature

ATLAS-CONF-2011-155

- The CMS Experiment
- Hadronic searches
 - Inclusive hadronic analysis
- Search with many jets
 - Direct sbottom production
- Leptonic searches
- Searches with photons
- Long-lived particles

All-Hadronic Search with ≥ 6 Jets: Introduction

- ◆ Events with larger jet multiplicities → increased sensitivity to models predicting:
 - Many-body decays
 - Sequential cascade decays to many strongly interacting particles
 - SUSY models that have gluinos with masses near the TeV scale and relatively heavy squarks
- Need to carefully examine SM background with high jet multiplicities
- **4 Signal regions** defined by $E_T^{miss}/\sqrt{H_T} > 3.5\sqrt{GeV}$:
 - Jets have to be central ($|\eta|$ <2.8) and separated from each other by ΔR >0.6

Signal region	7j55	8j55	6j80	7j80
Jet p _T	> 55 GeV	> 55 GeV	> 80 GeV	> 80 GeV
Number of Jets	≥ 7	≥ 8	≥ 6	≥ 7

ATLAS CERN-PH-EP-2011-155, Submitted to JHEP

All-Hadronic Search with ≥ 6 Jets: Background determination

CERN-PH-EP-2011-155,

Submitted to JHEP

- Control regions: Multi-jet, top, Z, W
- Transfer factors to extrapolate to signal region

Data 2011 ($\sqrt{s} = 7 \text{ TeV}$) Data 2011 (\s = 7 TeV) L dt ~ 1.34 fb ษี 10⁶ L dt ~ 1.34 fb Total SM Prediction $\diamond \geq 1$ b-tagged jet Total SM Prediction i Î $\Rightarrow 1.5 \sqrt{\text{GeV}} < \text{MET}/10^{\circ}$ QCD+tt→ gg (Template) Alpgen tt→ ql,ll ATLAS ATLAS 10⁵ Alpaen $t\bar{t} \rightarrow al.ll$ Alpgen $W \rightarrow (e,\mu,\tau)v$ \diamond one single Alpgen $W \rightarrow (e,\mu,\tau)v$ $\sqrt{H_T}$ < 2 \sqrt{GeV} Alpgen $Z \rightarrow (ee, \mu\mu, \tau\tau)$ 10⁴ Alpaen $Z \rightarrow vv$ 105 SUSY Point (1220,180) ----- SUSY Point (1220.180) isolated muon 10⁴ 10³ with overlaid Top Control Region Multi-Jet Control Region 10³ 10² $1.5 < E_{T}^{miss} / \sqrt{H_{T}} < 2 \text{ GeV}^{1/2}$ p_ > 55 GeV jets with $p_T > 20 \text{ GeV}$ templates from 10² p_ > 55 GeV jets 10 10 and $|\eta| < 2.4$, $MET/\sqrt{HT} < 1.5$ 10 10-1 √GeV 8 9 10 12 Number of Jets Number of Jets \diamond Z \rightarrow vv is predicted 10 Events Data 2011 (\s = 7 TeV) Data 2011 (\s = 7 TeV) L dt ~ 1.34 fb L dt ~ 1.34 fb Total SM Prediction Total SM Prediction Alpgen $Z \rightarrow \mu \mu$ Alpgen $W \rightarrow \mu v$ \diamond one single 10⁶ ATLAS ATLAS from MC (ALPGEN) Alpaen $t\bar{t} \rightarrow al.ll$ Alpaen $t\bar{t} \rightarrow al.ll$ Alpgen Z→ (ee,μμ,ττ) Alpgen $Z \rightarrow (ee, \tau\tau)$ 10⁵ Alpaen $W \rightarrow (e.u.\tau)v$ Alpgen $W \rightarrow (e,\tau)v$ isolated muon \diamond MC is verified on SUSY Point (1220,180) SUSY Point (1220,180) 10⁴ Z Control Region W Control Region with $p_T > 20 \text{ GeV}$ 10³ μμ control sample 102 p_ > 55 GeV jets p₊ > 55 GeV jets 10² and $|\eta| < 2.4$, 10 10 9 8 10 8 9 10 Number of Jets Number of Jets

- No sign for new physics in signal regions
- → Set exclusion limit in cMSSM

CERN-PH-EP-2011-155, Submitted to JHEP

No excess observed!

- The CMS Experiment
- Hadronic searches
 - Inclusive hadronic analysis
 - Search with many jets
- Direct sbottom production
- Leptonic searches
- Searches with photons
- Long-lived particles

Direct sbottom production: Introduction and Selection

- MSSM: left- and right-handed squarks mix proportional to mass of corresponding SM quark → large mixing can yield one light stop and sbottom mass eigenstate (significantly lighter than the other squarks)
- Here: search for $\tilde{b} \rightarrow b \tilde{\chi}_1^0$

Selection

- At least 2 b-tagged jets with $p_T^{jet1(jet2)} > 130$ (50) GeV and $|\eta| < 2.5$
- Veto events with muons, electrons or jets with $p_T^{jet} > 50$
- $\bullet \ E_T^{miss}/(E_T^{miss} + H_T) > 0.25$
- 3^{rd} jet has to be separated from E_T^{miss} by 0.2 in azimuth
- $E_T^{miss} > 130 \text{ GeV}$
- Calculate **boost-corrected contransverse** mass for 2 identical particles into 2 visible (v_i) and 2 invisible particles:

$$m_{CT} = \left(\left[E_T(v_1) + E_T(v_2) \right]^2 - \left[\vec{p}_T(v_1) + \vec{p}_T(v_2) \right]^2 \right)^{1/2}$$

• Expect endpoint in m_{CT} at $\left(m_{\tilde{b}_1}^2 - m_{\tilde{\chi}_1^0}^2\right) / m_{\tilde{b}_1}$

ATLAS arXiv:1112.3832 Submitted to PRL

→ Define **3 signal regions**: $m_{CT} > 100$, 150, 200 GeV

Direct sbottom production: Background Estimation

- Main backgrounds:
 - ttbar
 - W+heavy flavor with W $\rightarrow v\tau$
 - Z +heavy flavor with $Z \rightarrow vv$
 - → Estimation from control regions

ATLAS arXiv:1112.3832 Submitted to PRL

No excess observed! **ATLAS** Entries / 25 GeV 50F ATLAS arXiv:1112.3832 Data 2011 SM Total L dt ~ 2.05 fb⁻¹, $\sqrt{s} = 7$ TeV Submitted to PRL 40 top, W+hf 2-iet exclusive Z+hf Others 30 ---- b 300, χ^{˜0} 100 GeV 20 10 Observed Limit (95% C.L 0^E 400 350 b.-b. production. b. \rightarrow b+ $\tilde{\gamma}$ 200 m_{cT} [GeV] 400 100 200 E_{T}^{miss} [GeV] 100 300 CL_ Expected Limit (95% C.L.) CL Expected Limit $\pm 1 \sigma$ ²2 کر 300 $\pm 1\sigma$ NLO scale unc. CDF 2.65 fb⁻¹ D0 5.2 fb 250 ATLAS Exclusion limit in the sbottom-neutralino L dt = 2.05 fb⁻¹.vs = 7 TeV ÷ 200 mass plane 150 Reference point corresponds to the ÷ MSSM scenario with $m_{sbottom} = 300 \text{ GeV}$ and $m_{neutralino} = 100 \text{ GeV}$ 100 * Reference point 50 0 ${\stackrel{400}{m_{\widetilde{b}}}}\,[\text{GeV}]$ 100 150 250 300 350

200

- The CMS Experiment
- Hadronic searches
- Leptonic searches
- Searches with Z + jets + E_T^{miss}
 - Searches with four leptons
- Searches with photons
- RPV SUSY
- Long-lived particles

Opposite Sign Di-Leptons: Event Selection on Z-region

Data

Z+Jets

WW+WZ+ZZ

200

- New physics expected to connect to EW sector, e.g. $\chi_2^0 \rightarrow Z \chi_1^0$
- **Baseline selection**
 - → $p_T^{lep1, lep2}$ > 20 GeV, $|\eta|$ < 2.4 (µ) and $|\eta|$ < 2.5 (e)
 - Relative isolation : I = $\Sigma(E_{T(Cal.)}+P_{T(Tracker)})/p_T^{lep} < 0.15$ for leptons
 - At least 2(3) jets with $P_T > 30$ GeV, $|\eta| < 3$ and $\Delta R = 0.4$ away from leptons Events / 2 Ge\ Preliminary
 - → $|m_{lep,lep} m_Z| < 10(20) \text{ GeV}$
- Two search strategies
 - *E_T^{miss} measurement:*
 - → E_T^{miss} > 30 / 60 / 100 / 200 / 300 GeV 10
 - Jet-Z balance method:
 - At least 3 jets with $P_T > 30$ GeV, $|\eta| < 3$ and $\Delta R = 0.4$ away from

 10^{3}

 10^{2}

60

leptons \Rightarrow JZB = $|\Sigma p_T^{\text{jets}}| - |p_T^Z| > 50 / 100 / 150 / 200 / 250 \text{ GeV}$

CMS PAS SUS-11-021

 $\sqrt{s} = 7$ TeV, (Ldt = 4.7fb⁻

140

160

Di-Electron Mass (GeV)

180

Events with ee

Isabell Melzer-Pellmann 3rd LC Forum, DESY/Hamburg 2012

- The CMS Experiment
- Hadronic searches
- Leptonic searches
 - Searches with Z + jets + E_T^{miss}
- Searches with four leptons

Searches with photons

Search with four leptons: Introduction

4-lepton signatures can occur in R_{P} conserving and R_{P} violating scenarios

- ✓ Reminder: $R_P = (-1)^{2S+3B+L}$ with S: Spin, B: baryon number, L: lepton number
 ✓ Introduced to keep the proton stable

 - $R_{P}=1$: SM particle
 - → R_p =-1: SUSY particle
- If R-parity is conserved (RPC)
 - SUSY particles produced in pairs
 - Single SUSY particles cannot decay into just SM particles
 - Lightest SUSY particle (LSP) absolutely stable
- If R-parity is violated (RPV)
 - More couplings:

But: some couplings have to be small in order to keep the proton stable

- 2 signal regions
 - 4 leptons + E_T^{miss} > 50 GeV
 - 4 leptons + E_T^{miss} > 50 GeV + veto on same-flavor opposite-sign leptons with $m_{inv} = m_Z \pm 10$ GeV
- Background from events with at least 2 prompt leptons estimated from control regions

RPV model: $m_{1/2}$ =400 GeV, tan β =22, m_0 =A₀=0, sign(μ) =1 and λ_{121} = 0.032 (0.048) at the GUT (EW) scale **RPC model:** direct gauginos with sleptons: bino mass m_1 =100 GeV, wino mass m_2 =250 GeV, higgsino mass μ =160 GeV and tan β =6

No excess observed!

- The CMS Experiment
- Hadronic searches
- Leptonic searches
 - Searches with Z + jets + E_T^{miss}
 - Searches with four leptons
- RPV SUSY

Searches with photons

• Sneutrinos are expected to decay into e and μ in RPV SUSY

Event selection

- Isolated e ($|\eta|$ <1.37 or 1.52< $|\eta|$ <2.47) and μ ($|\eta|$ <2.4) with p_T>25 GeV with opposite charge
- Backgrounds
 - $Z/\gamma^* \rightarrow \tau\tau$, ttbar, ZZ, WW, ZW, single top
 - Events with 'fake' leptons: W/Z+γ, W/Z+jets, multijet events

No excess observed!

→ Set limit

AT LAS

- The CMS Experiment
- Hadronic searches
- Leptonic searches
- \Longrightarrow Searches with photons \Leftarrow
 - \rightarrow Search with di-photons
 - Long-lived particles

Di-photon analysis interpreted in GMSB model: Gravitino is LSP, neutralino is NLSP

Sample (CMS)	E _T ^{miss} > 50 GeV	E _T ^{miss} > 100 GeV	
Total predicted SM	$11.3 \pm 1.9 \pm 0.8$	$1.5 \pm 0.8 \pm 0.6$	
Data	9	0	

- 95% CL upper limits on the cross section in gluino-squark mass space for a neutralino mass of 375 GeV
- 95% CL exclusion contours in gluinosquark mass space for a neutralino mass of 375 GeV

No excess observed!

 95% CL exclusion contours in gluinoneutralino mass space

ATLAS arXiv:1111.4116 Submitted to PLB

- The CMS Experiment
- Hadronic searches
- Leptonic searches
- Searches with photons

Long-lived particles

- Predicted by several theories, e.g. split-SUSY, gauge-mediated SUSY breaking, UED
- Split-SUSY: gluino decay suppressed by large squark mass
- Hadronization: long-lived gluinos bind with SM quarks/gluons ("R-hadrons")
- → R-hadrons scatter via the nuclear force → exchange partons with the detector material (e.g. $\tilde{g}q\bar{q} \rightarrow \tilde{g}qqq$) → charge-flip between electrically neutral, singly- and doubly-charged states in detector
- R-hadrons might be produced near threshold \rightarrow slow ($\beta < 1$) \rightarrow large ionisation \rightarrow might be stopped and decay late \rightarrow search in empty bunches
- Decay via $\widetilde{g} \to \widetilde{g}_{\chi_1^0}^{\sim}$ or $\widetilde{g} \to \overline{q}q_{\chi_1^0}^{\sim}$

Background in empty bunches:

 Cosmic-ray muons, beam-halo muons, proton-proton collisions, protongas collisions, calorimeter noise

2 signal channels:

- Single-jet channel
- Multi-jet channel (due to very high-energetic R-hadrons)

 Limit on R-hadrons decaying to a gluon and LSP (mχ₁⁰ =100 GeV) with lifetime between 10⁻⁵ to 10³ seconds

10[⊾]

200

Jet energy for the single jet channel, for selected events before the leading jet energy requirement p_T >100 GeV

Limit on gluino mass for $m\chi_1^0 = 100$ GeV

400

450

500

550

M_≈ (GeV)

350

L dt = 31 pb⁻¹

250

300

ATLAS arXiv 1201.5595 Submitted to EPJC

600

Similar results from CMS

Limit on stop anti-stop mass for $m\chi_1^0 = 100 \text{ GeV}$

No excess observed!

Limit on gluino mass for $m\chi_1^0 = 100 \text{ GeV}$

CMS PAS EXO-11-020

For limits on m(gluino): m(squark)>>m(gluino) and vice verso ÷

Ranges of exclusion limits for gluinos and squarks, varying $m(\tilde{\chi}^0)$

		ATLAS SUSY S	earches* - 95% CL Lower Limits (Stat	tus: Dec. 2011)
	MSUGRA/CMSSM : 0-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.6572]	950 GeV $\tilde{q} = \tilde{g}$ mass	ATLAS
	MSUGRA/CMSSM : 1-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.6606]	820 GeV $\tilde{q} = \tilde{g}$ mass	Prelimina
	MSUGRA/CMSSM : multijets + $E_{T,miss}$	L=1.3 fb ⁻¹ (2011) [arXiv:1110.2299]	680 GeV \tilde{g} mass (for $m(\tilde{q}) = 2m(\tilde{g})$)	
	Simpl. mod. : 0-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.6572]	1.075 TeV $\tilde{q} = \tilde{g}$ mass (light $\tilde{\chi}_1^0$)	$\int Ldl = (0.03 - 2.0)$ It
	Simpl. mod. : 0-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.6572]	875 GeV \tilde{q} mass $(m(\tilde{g}) < 2 \text{ TeV}, \text{ light } \tilde{\chi}_1^0)$	IS = 7 1e
	Simpl. mod. : 0-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.6572]	700 GeV \widetilde{g} mass $(m(\widetilde{q}) < 2 \text{ TeV}, \text{ light } \widetilde{\chi}_1^0)$	
	Simpl. mod. : 0-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-155]	700 GeV \tilde{q} mass $(m(\tilde{g}) < 2 \text{ TeV}, m(\tilde{\chi}_1^0) < 20$	0 GeV)
	Simpl. mod. : 0-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-155]	650 GeV \tilde{g} mass $(m(\tilde{q}) < 2 \text{ TeV}, m(\tilde{\chi}_1^0) < 200)$	GeV)
	Simpl. mod. $(\tilde{g} \rightarrow q \overline{q} \tilde{\chi}^{\pm})$: 1-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.6606]	600 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 200 \text{ GeV}, \Delta m(\tilde{\chi}^{\pm}, \tilde{\chi}^0)$) / $\Delta m(\widetilde{g}, \widetilde{\chi}^0) > 1/2)$
	Simpl. mod. : 0-lep + b-jets + j's + $E_{T,miss}$	L=0.83 fb ⁻¹ (2011) [ATLAS-CONF-2011-098]	720 GeV \tilde{g} mass $(m(\tilde{b}) < 600 \text{ GeV}, \text{ light } \tilde{\chi}_1^0)$	
S	impl. mod. $(\tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0)$: 1-lep + b-jets + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-130]	540 GeV \tilde{g} mass ($m(\tilde{\chi}_1^0) < 80$ GeV)	
227	Simpl. mod. $(\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0)$: 2 b-jets + $E_{T,miss}$	L=2.05 fb ⁻¹ (2011) [Preliminary]	390 GeV \tilde{b} mass $(m(\tilde{\chi}_1^0) < 60 \text{ GeV})$	
Ŋ	Simpl. mod. $(\tilde{\chi}_{*}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow 3 I \tilde{\chi}_{*}^{0})$: 2-lep SS + $E_{T,\text{miss}}$	200 GeV L=1.0 fb ⁻¹ (2011) [arXiv:1110.6189]	$\widetilde{\chi}_{\star}^{\pm}$ mass (light $\widetilde{\chi}_{\star}^{0}, m(\widetilde{I}) = \frac{1}{2}(m(\widetilde{\chi}_{\star}^{\pm}) + m(\widetilde{\chi}_{0}^{0})))$	
	GMSB : 2-lep OS _{SF} + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-156]	810 GeV \tilde{g} mass (corresp. to $\Lambda < 35$ TeV,	tanβ < 35)
	GGM + Simpl. model : $\gamma\gamma$ + $E_{T miss}$	L=1.1 fb ⁻¹ (2011) [arXiv:1111.4116]	805 GeV \tilde{g} mass (<i>m</i> (bino) > 50 GeV)	
	GMSB : stable τ	136 GeV L=37 pb ⁻¹ (2010) [1106.4495] τ mas	SS .	
	AMSB : long-lived $\widetilde{\chi}^{\pm}_{\star}$	92 GeV L=1.0 fb ⁻¹ (2011) [Prei] $\tilde{\chi}^{\pm}$ mass (0)	$5 < \tau(\tilde{\gamma}^{\pm}) < 2 \text{ ns}$	
	Stable massive particles : R-hadrons	L=34 pb ⁻¹ (2010) [arXiv:1103.1984]	562 GeV g mass	
	Stable massive particles : R-hadrons	L=34 pb ⁻¹ (2010) [arXiv:1103.1984] 294	Gev b mass	
	Stable massive particles : R-hadrons	/ -34 pb ⁻¹ (2010) [arXiv:1103 1984] 309		
	Hypercolour scalar gluons : 4 jets, $m_{ii} \approx m_{vi}$	185 GeV 1=34 pb ⁻¹ (2010) [arXiv:1110.2693] S	gluon mass (excl: $m_{eq} < 100 \text{ GeV}$, $m_{eq} \approx 140 \pm 3 \text{ Ge}$	V)
	RPV : high-mass eµ	/ -1 1 fb ⁻¹ (2011) [arXiv:1109.3089]	1 32 TeV V mass (Å=0.10. Å=	=0.05)
	Bilinear RPV : 1-lep + i's + $E_{T mice}$	/ -1.0 fb ⁻¹ (2011) [arXiv:1109.6606]	760 GeV $\tilde{q} = \tilde{q}$ mass (ct < 15 mm)	
	, , , , , , , , , , , , , , , , , , ,			
		10 ⁻¹	1	10
				Mass scale IT

Isabell Melzer-Pellmann 3rd LC Forum, DESY/Hamburg 2012

- Results from many analyses have been presented based on 2011 data
- None of the analyses has observed any significant deviation from the Standard Model ⁽³⁾
- Exclusion limits have been set
 - Using cMSSM
 - In simplified models

Many more results with full 2011 data expected for Moriond...

- Higher energy \rightarrow higher cross-sections
- Reach for higher sparticle masses

 Experiments will continue "standard" analysis, and in addition tune analyses to have better reach for special models, e.g. 3rd generation searches, EWkino production

Much more interesting data to come – stay tuned...

AT LAS

In General Gauge Mediated SUSY

- Gravitino is LSP
- Neutralino is NLSP
 - Neutralinos: mix of Binos, neutral Winos, and Higgsinos
 - In CMS up to now: interpretation via a "Bino-like" neutralino model, with $\chi_0^1 \rightarrow \gamma + G$ (undetected $G \Rightarrow E_T^{miss}$)
 - Conserve R parity \Rightarrow two neutralinos \Rightarrow di-photon analysis
- NEW: Add simplified model where the Wino is less massive than the Bino, resulting in a neutralino-chargino co-NLSP
 - Photons not as common as in Bino-like case, Sutatin tcaling, agost make 2 p frequently at lower neutralino mass ⇒ single photon analysis

95% CL exclusion contours in

gluino-squark mass space

95% CL upper limit in gluino-squark mass space

Isabell Melzer-Pellmann

3rd LC Forum, DESY/Hamburg 2012

Isabell Melzer-Pellmann

3rd LC Forum, DESY/Hamburg 2012

Di-photon analysis:

- At least 2 photons in barrel with $p_T^{\gamma 1} > 45$ GeV, $p_T^{\gamma 2} > 30$ GeV
- At least 1 jet with $p_T > 30$ GeV, $|\eta| < 2.6$
- ↓ Loose signal region: E_T^{miss} > 50 GeV
- Tight signal region: E_T^{miss} > 100 GeV

Single photon analysis:

- Exactly 1 photon in barrel with $p_T^{\gamma} > 75$ GeV (due to trigger constraint)
- $H_T > 400 \text{ GeV}$ (also from trigger)
- At least 3 jets with $p_T > 30$ GeV, $|\eta| < 2.6$
- $E_T^{miss} > 200 \text{ GeV}$

- QCD background (no true E_T^{miss})
 - Mis-measurement of E_T^{miss} in QCD processes and/or photon misidentification:
 - Direct di-photon production
 - γ +jets and multijets, with jets mimicking photons
 - Background determined from samples with 2 fake γ or 2 electrons

Electroweak background with true E_T^{miss}

 Background from events with real or fake photon and W → ve (where e is misidentified as γ)

Fake rate determination

 Measure rate of events in Z region in eγ and ee sample:

 $f_{e \to \gamma} = 0.014 \pm 0.0004 \text{ (stat.)} \pm 0.002 \text{ (syst.)}$

CMS PAS SUS-11-009

Searches with Single Photons: Background Determination

- Background determination similar to di-photon case
- Additional backgrounds: initial state radiation (ISR) and final state radiation (FSR) of photons:
 - ISR and FSR in events with electrons in final state covered by EW background prediction from data
 - Remaining contributions from SM process are very small taken from Monte Carlo simulation with a systematic uncertainty of 100%.

Sample	Event yield		
		(stat.)	(syst.)
Data	7		
QCD (est. from data)	5.16	± 2.58	±0.62
EWK $e \rightarrow \gamma$ (est. from data)	1.22	± 0.13	± 0.04
FSR/ISR ($W \rightarrow \mu / \tau \nu, Z \rightarrow \nu \nu$) (Sim.)	0.80	± 0.31	± 0.80
FSR/ISR (t $\bar{t} \rightarrow \mu/\tau \nu + X$) (Sim.)	0.07	± 0.05	± 0.07
Total SM background estimate	7.24	±2.6	± 1.53

No excess observed!

- Observed and expected 95% CL exclusion limit in the CMSSM m₀-m_{1/2} plane using the signal cross sections calculated at NLO
- Contours are the combination of the different selections, such that the shown contours are the envelope with respect to best sensitivity

