MSSM Parameter determination via $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$: NLO corrections

Aoife Bharucha

in collaboration with Jan Kalinowski, Gudrid Moortgat-Pick, Krzysztof Rolbiecki and Georg Weiglein

 $3^{\rm rd}$ LC Forum, DESY, Feb 2012

- Beyond the CMSSM
- The Chargino-Neutralino sector
- Parameter determination via $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$
- Incorporating NLO corrections
- Results of fit for Chargino production@LC

Status of the CMSSM at ATLAS and CMS

Beyond the CMSSM (e.g. at ATLAS)

Quick recap: Chargino and Neutralino Sector

$$X = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin\beta \\ \sqrt{2}M_W \cos\beta & \mu \end{pmatrix}$$

diagonalised via
$$\mathbf{M}_{\tilde{\chi^+}} = U^* X V^\dagger$$

⁰where we define $\omega_{L/R} = \frac{1}{2}(1 \mp \gamma_5)$

Quick recap: Chargino and Neutralino Sector

$$\begin{aligned} \mathcal{L}_{\tilde{\chi}} = & \overline{\tilde{\chi}_{i}^{-}} (p \!\!\!/ \delta_{ij} - \omega_{L} (U^{*} X V^{\dagger})_{ij} - \omega_{R} (V X^{\dagger} U^{T})_{ij}) \tilde{\chi}_{j}^{-} \\ &+ \frac{1}{2} \overline{\chi_{i}^{0}} (p \!\!/ \delta_{ij} - \omega_{L} (N^{*} Y N^{\dagger})_{ij} - \omega_{R} (N Y^{\dagger} N^{T})_{ij}) \tilde{\chi}_{j}^{0} \end{aligned} \\ X = \begin{pmatrix} M_{2} & \sqrt{2} M_{W} \sin \beta \\ \sqrt{2} M_{W} \cos \beta & \mu \end{pmatrix} & \text{diagonalised via} \\ M_{\tilde{\chi}^{+}} = U^{*} X V^{\dagger} \\ & M_{2} & M_{Z} c_{\beta} c_{W} & M_{Z} s_{\beta} s_{W} \\ 0 & M_{2} & M_{Z} c_{\beta} c_{W} & -M_{Z} s_{\beta} c_{W} \\ M_{Z} s_{\beta} s_{W} & -M_{Z} s_{\beta} c_{W} & -\mu & 0 \end{pmatrix} & \text{diagonalised via} \\ M_{\tilde{\chi}^{0}} = N^{*} Y N^{\dagger} \end{aligned}$$

⁰where we define $\omega_{L/R} = \frac{1}{2}(1 \mp \gamma_5)$

Parameters from $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$ @NLO

Chargino production@LC

Parameter determination at tree-level:

- Analyse $\sigma^{\pm}_{L/R}\{i,j\}$ i.e. L/R polarised $\tilde{\chi}^+_i \tilde{\chi}^-_j$ production cross-section¹
- From $\sigma_{L/R}^{\pm}\{1,1\}$ determine M_2 , μ and $\tan \beta^2$
- M_1 then extracted from the neutralino sector
- Assume $\sqrt{s} \leq 500~{\rm GeV},\,500\,{\rm fb}^{-1},\,P_{e^-}=\mp80\%$ and $P_{e^+}=\pm60\%$

Aoife Bharucha (Universität Hamburg) Parameters from $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$ @NLO LC Forum, DESY, Feb 2012 6 / 15

¹K. Desch, J. Kalinowski, G. A. Moortgat-Pick, M. M. Nojiri and G. Polesello, [arXiv:hep-ph/0312069].

² Input SPS1a: $M_1 = 99.13$ GeV, $M_2 = 192.7$ GeV, $\mu = 352.4$ GeV and $\tan \beta = 10$

Chargino production@LC

Parameter determination at tree-level:

- Analyse $\sigma^{\pm}_{L/R}\{i,j\}$ i.e. L/R polarised $\tilde{\chi}^+_i \tilde{\chi}^-_j$ production cross-section¹
- From $\sigma_{L/R}^{\pm}\{1,1\}$ determine M_2 , μ and $\tan \beta^2$
- M_1 then extracted from the neutralino sector
- Assume $\sqrt{s} \leq 500~{\rm GeV},\,500\,{\rm fb}^{-1},\,P_{e^-}=\mp80\%$ and $P_{e^+}=\pm60\%$

SUSY Parameters				М	ass Predictio	ns
M_1	M_2	μ	aneta	$m_{\tilde{\chi}_2^{\pm}}$	$m_{ ilde{\chi}^0_3}$	$m_{ ilde{\chi}_4^0}$
99.1 ± 0.2	192.7 ± 0.6	352.8 ± 8.9	10.3 ± 1.5	378.8 ± 7.8	359.2 ± 8.6	378.2 ± 8.1

Table: SUSY parameters with 1σ errors derived from the analysis of the assumed LC data collected at the first phase of operation. Shown are also the predictions for the heavier chargino/neutralino masses.

² Input SPS1a: $M_1 = 99.13$ GeV, $M_2 = 192.7$ GeV, $\mu = 352.4$ GeV and $\tan \beta = 10$

Aoife Bharucha (Universität Hamburg) Parameters from $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- @$ NLO LC Forum, DESY, Feb 2012 6/15

¹K. Desch, J. Kalinowski, G. A. Moortgat-Pick, M. M. Nojiri and G. Polesello, [arXiv:hep-ph/0312069].

SUSY loop effects known to be large:

- Fundamental parameter determination possible in chargino and neutralino sector at LC to percent level, loop effects critical such that **theory meets experimental accuracy**
- Sensitivity to parameters arising via loops, e.g. stop sector

SUSY loop effects known to be large:

- Fundamental parameter determination possible in chargino and neutralino sector at LC to percent level, loop effects critical such that **theory meets experimental accuracy**
- Sensitivity to parameters arising via loops, e.g. stop sector

SUSY loop effects known to be large:

- Fundamental parameter determination possible in chargino and neutralino sector at LC to percent level, loop effects critical such that **theory meets experimental accuracy**
- Sensitivity to parameters arising via loops, e.g. stop sector

Parameter determination at NLO:

- Use NLO corrected masses and cross-sections
- Use A_{fb} as additional measurement
- Fit to M_1 , M_2 , μ , $\tan\beta$, + stop sector $m_{\tilde{t}_1}$, $m_{\tilde{t}_2}$ and $\cos\theta_t$

Example diagrams for $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$ at one-loop

Calculate using FeynArts, FormCalc, LoopTools

Getting finite results: selected counter-terms

Renormalize $\gamma \tilde{\chi}_i^+ \tilde{\chi}_j^-$, $Z \tilde{\chi}_i^+ \tilde{\chi}_j^-$ and $e \tilde{\nu}_e \tilde{\chi}_i^+$ vertices³

$$\begin{split} \delta\Gamma^{L}_{\tilde{\chi}^{+}_{i}\tilde{\chi}^{-}_{j}\gamma} = & \frac{ie}{2} \left(\delta_{ij} \left(2\delta Z_{e} + \delta Z_{\gamma\gamma} \right) - \frac{\delta Z_{Z\gamma}}{c_{W}s_{W}} C^{L}_{\tilde{\chi}^{+}_{i}\tilde{\chi}^{-}_{j}Z} + \delta Z^{L}_{ij} + \delta \bar{Z}^{L}_{ij} \right), \\ \delta\Gamma^{L}_{\tilde{\chi}^{+}_{i}\tilde{\chi}^{-}_{j}Z} = & \frac{-ie}{c_{W}s_{W}} \left(\delta C^{L}_{\tilde{\chi}^{+}_{i}\tilde{\chi}^{-}_{j}Z} + C^{L}_{\tilde{\chi}^{+}_{i}\tilde{\chi}^{-}_{j}Z} \left(\delta Z_{e} - \frac{\delta c_{W}}{c_{W}} - \frac{\delta s_{W}}{s_{W}} + \frac{\delta Z_{ZZ}}{2} \right) \\ & - \delta_{ij} \frac{c_{W}s_{W}}{2} \delta Z_{\gamma Z} + \frac{1}{2} \sum_{n=1,2} \left(\delta Z^{L}_{nj} C^{L}_{\tilde{\chi}^{+}_{i}\tilde{\chi}^{-}_{n}Z} + C^{L}_{\tilde{\chi}^{+}_{n}\tilde{\chi}^{-}_{j}Z} \delta \bar{Z}^{L}_{in} \right) \right) \\ \delta\Gamma^{L}_{\tilde{\nu}_{e}e^{+}\tilde{\chi}^{-}_{i}} = & \frac{ie\delta_{ij}}{s_{W}} \left(C^{L}_{\tilde{\nu}_{e}e^{+}\tilde{\chi}^{-}_{i}} \left(\delta Z_{e} - \frac{\delta s_{W}}{s_{W}} + \frac{1}{2} \left(\delta Z_{\tilde{\nu}_{e}} + \delta Z^{R*}_{e} \right) \right. \\ & + \frac{1}{2} \left(\delta Z^{L}_{1i}U^{*}_{12} + \delta Z^{L}_{2i}U^{*}_{22} \right) \right) + \delta C^{L}_{\tilde{\nu}_{e}e^{+}\tilde{\chi}^{-}_{i}} \right). \end{split}$$

³as in A. Bharucha, A. Fowler, G. Moortgat-Pick, G. Weiglein, [arXiv:12XX.XXXX [hep-ph]]

Aoife Bharucha (Universität Hamburg) Parameters from $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$ @NLO LC Forum, DESY, Feb 2012 9/15

Getting finite results: selected counter-terms

Renormalize $\gamma \tilde{\chi}_i^+ \tilde{\chi}_j^-$, $Z \tilde{\chi}_i^+ \tilde{\chi}_j^-$ and $e \tilde{\nu}_e \tilde{\chi}_i^+$ vertices³

$$\begin{split} \delta\Gamma^{L}_{\tilde{\chi}^{+}_{i}\tilde{\chi}^{-}_{j}\gamma} &= \frac{ie}{2} \left(\delta_{ij} \left(2\delta Z_{e} + \delta Z_{\gamma\gamma} \right) - \frac{\delta Z_{Z\gamma}}{c_{W}s_{W}} C^{L}_{\tilde{\chi}^{+}_{i}\tilde{\chi}^{-}_{j}Z} + \delta Z^{L}_{ij} + \delta \bar{Z}^{L}_{ij} \right), \\ \delta\Gamma^{L}_{\tilde{\chi}^{+}_{i}\tilde{\chi}^{-}_{j}Z} &= \frac{-ie}{c_{W}s_{W}} \left(\delta C^{L}_{\tilde{\chi}^{+}_{i}\tilde{\chi}^{-}_{j}Z} + C^{L}_{\tilde{\chi}^{+}_{i}\tilde{\chi}^{-}_{j}Z} \left(\delta Z_{e} - \frac{\delta c_{W}}{c_{W}} - \frac{\delta s_{W}}{s_{W}} \frac{\delta Z_{ZZ}}{2} \right) \\ &- \delta_{ij} \frac{c_{W}s_{W}}{2} \delta Z_{\gamma Z} + \frac{1}{2} \sum_{n=1,2} \left(\delta Z^{L}_{nj} C^{L}_{\tilde{\chi}^{+}_{i}\tilde{\chi}^{-}_{n}Z} + C^{L}_{\tilde{\chi}^{+}_{n}\tilde{\chi}^{-}_{j}Z} \delta \bar{Z}^{L}_{in} \right) \right) \\ \delta\Gamma^{L}_{\tilde{\nu}_{e}e^{+}\tilde{\chi}^{-}_{i}} &= \frac{ie\delta_{ij}}{s_{W}} \left(C^{L}_{\tilde{\nu}_{e}e^{+}\tilde{\chi}^{-}_{i}} \left(\delta Z_{e} - \frac{\delta s_{W}}{s_{W}} + \frac{1}{2} \left(\delta Z^{L}_{\tilde{\nu}_{e}} + \delta Z^{R*}_{e} \right) \right) \\ &+ \frac{1}{2} \left(\delta Z^{L}_{1i} U^{*}_{12} + \delta Z^{L}_{2i} U^{*}_{22} \right) \right) + \delta C^{L}_{\tilde{\nu}_{e}e^{+}\tilde{\chi}^{-}_{i}} \right). \end{split}$$

³as in A. Bharucha, A. Fowler, G. Moortgat-Pick, G. Weiglein, [arXiv:12XX.XXXX [hep-ph]]

Aoife Bharucha (Universität Hamburg) Parameters from $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$ @NLO LC Forum, DESY, Feb 2012 9/15

• $X + \delta X, Y + \delta Y \Rightarrow M_1 + \delta M_1, M_2 + \delta M_2, \mu + \delta \mu$ etc.

⁴A. C. Fowler, PhD Thesis, 2010, also see A. Chatterjee, M. Drees, S. Kulkarni, Q. Xu, "On the On-Shell Renormalization of the Chargino and Neutralino Masses in the MSSM," [arXiv:1107.5218 [hep-ph]].

Aoife Bharucha (Universität Hamburg) Parameters from $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- @$ NLO LC Forum, DESY, Feb 2012 10 / 15

•
$$X + \delta X, Y + \delta Y \Rightarrow M_1 + \delta M_1, M_2 + \delta M_2, \mu + \delta \mu$$
 etc.
• e.g. $\delta X = \begin{pmatrix} \delta M_2 & \frac{\delta M_W^2 s_\beta}{\sqrt{2}M_W} + M_W s_\beta c_\beta^2 \delta t_\beta \\ \frac{\delta M_W^2 c_\beta}{\sqrt{2}M_W} - M_W c_\beta s_\beta^2 \delta t_\beta & \delta \mu \end{pmatrix}$

where s_{β} denotes $\sin \beta$ etc. ($\overline{\text{DR}}$ renormalisation for $\tan \beta$)

Aoife Bharucha (Universität Hamburg) Parameters from $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$ @NLO LC Forum, DESY, Feb 2012 10/15

⁴A. C. Fowler, PhD Thesis, 2010, also see A. Chatterjee, M. Drees, S. Kulkarni, Q. Xu, "On the On-Shell Renormalization of the Chargino and Neutralino Masses in the MSSM," [arXiv:1107.5218 [hep-ph]].

•
$$X + \delta X, Y + \delta Y \Rightarrow M_1 + \delta M_1, M_2 + \delta M_2, \mu + \delta \mu$$
 etc.
• e.g. $\delta X = \begin{pmatrix} \delta M_2 & \frac{\delta M_W^2 s_\beta}{\sqrt{2} M_W} + M_W s_\beta c_\beta^2 \delta t_\beta \\ \frac{\delta M_W^2 c_\beta}{\sqrt{2} M_W} - M_W c_\beta s_\beta^2 \delta t_\beta & \delta \mu \end{pmatrix}$

where s_{β} denotes $\sin \beta$ etc. ($\overline{\rm DR}$ renormalisation for $\tan \beta$)

More physical masses than independent parameters ⇒ can only choose three masses on-shell⁴:

•
$$\tilde{\chi}_{1,2}^{\pm}$$
, $\tilde{\chi}_{1(2/3)}^{0}$: NCC(b/c)

•
$$ilde{\chi}^{0}_{1,2}$$
, $ilde{\chi}^{\pm}_{2}$: NNC

• $\tilde{\chi}^{0}_{1,2}$, $\tilde{\chi}^{0}_{3}$: NNN

Aoife Bharucha (Universität Hamburg) Parameters from $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$ @NLO LC Forum, DESY, Feb 2012 10 / 15

⁴A. C. Fowler, PhD Thesis, 2010, also see A. Chatterjee, M. Drees, S. Kulkarni, Q. Xu,"On the On-Shell Renormalization of the Chargino and Neutralino Masses in the MSSM," [arXiv:1107.5218 [hep-ph]].

•
$$X + \delta X, Y + \delta Y \Rightarrow M_1 + \delta M_1, M_2 + \delta M_2, \mu + \delta \mu$$
 etc.
• e.g. $\delta X = \begin{pmatrix} \delta M_2 & \frac{\delta M_W^2 s_\beta}{\sqrt{2} M_W} + M_W s_\beta c_\beta^2 \delta t_\beta \\ \frac{\delta M_W^2 c_\beta}{\sqrt{2} M_W} - M_W c_\beta s_\beta^2 \delta t_\beta & \delta \mu \end{pmatrix}$

where s_{β} denotes $\sin \beta$ etc. ($\overline{\mathrm{DR}}$ renormalisation for $\tan \beta$)

- More physical masses than independent parameters ⇒ can only choose three masses on-shell⁴:
 - $\tilde{\chi}_{1,2}^{\pm}$, $\tilde{\chi}_{1(2/3)}^{0}$: NCC(b/c)
 - $\tilde{\chi}_{1,2}^0$, $\tilde{\chi}_2^{\pm}$: NNC
 - $\tilde{\chi}^{0}_{1,2}$, $\tilde{\chi}^{0}_{3}$: NNN

• $\Delta m_{\tilde{\chi}_i} = \frac{m_{\tilde{\chi}_i}}{2} \operatorname{Re}[\hat{\Sigma}_{ii}^L(m_{\tilde{\chi}_i}^2) + \hat{\Sigma}_{ii}^R(m_{\tilde{\chi}_i}^2)] + \frac{1}{2} \operatorname{Re}[\hat{\Sigma}_{ii}^{SL}(m_{\tilde{\chi}_i}^2) + \hat{\Sigma}_{ii}^{SR}(m_{\tilde{\chi}_i}^2)] = 0,$ results in renormalisation conditions fixing $\delta |M_1|, \, \delta |M_2|, \, \delta |\mu|$

⁴A. C. Fowler, PhD Thesis, 2010, also see A. Chatterjee, M. Drees, S. Kulkarni, Q. Xu,"On the On-Shell Renormalization of the Chargino and Neutralino Masses in the MSSM," [arXiv:1107.5218 [hep-ph]].

Aoife Bharucha (Universität Hamburg)

Parameter	Parameter Value		Value
$ M_1 $	125 GeV	M_2	250 GeV
$ \mu $	180 GeV	M_{H^+}	1000 GeV
$ M_3 $	1 TeV	$\tan \beta$	10
$M_{\tilde{q}_{12}}$	1.5 TeV	$M_{\tilde{f}_3}$	400/800 GeV

LHC

Parameter	Value	Parameter	Value		
$ M_1 $	125 GeV	M_2	250 GeV		
$ \mu $	180 GeV	M_{H^+}	1000 GeV		
$ M_3 $	1 TeV	an eta	10		
$M_{ ilde{q}_{12}}$	1.5 TeV	$M_{\tilde{f}_3}$	400/800 GeV		
imite /3					
limits					

Weak LHC constraints on charginos and neutralinos

Weak LHC constraints on charginos and neutralinos

Weak LHC constraints on charginos and neutralinos

Rates of chargino/neutralino production

At example point....

			(60%, -80%)	(-60%, 80%)	(0, 0)
		Process		cross section [fb]	
Large σ		$\rightarrow e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$	1450	155	515
		$e^+e^- \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$	35	36	23
		$e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1$	1.5	0.1	0.5
		$e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_2$	2.8	4.4	2.6
	_	$e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_3$	88	72	53
hreshold scans		$e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_4$	0.1	0	0
		$e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0$	0.2	0	0.1
		$e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_3^0$	155	112	91
		$e^+e^- \rightarrow \tilde{\chi}^0_2 \tilde{\chi}^0_4$	0	0	0
		$e^+e^- \rightarrow \tilde{\chi}^0_3 \tilde{\chi}^0_3$	0.2	0.1	0.1
		$e^+e^- \rightarrow \tilde{\chi}^0_3 \tilde{\chi}^0_4$	11	8.6	6.6
		$A_{FB}(\ell)$	-2.6%	-4.7%	-3%
		$A_{FB}(\tilde{\chi}_1)$	-2.2%	-9.3%	-3%

Fitting $e^+e^- \rightarrow \tilde{\chi}^+_i \tilde{\chi}^-_j @$ LC ($\mathcal{L} = 200 \text{ fb}^{-1}$ and $\varepsilon = 15\%$)

Observable	Tree value	Loop correction	Error
$m_{\tilde{\chi}_1^{\pm}}$	149.6	_	0.2
$m_{\tilde{\chi}_2^{\pm}}$	292.3	-	2.0
$m_{ ilde{\chi}_1^0}$	106.9	_	0.2
$m_{ ilde{\chi}^0_2}$	164.0	2.0	1.0
$m_{ ilde{\chi}^0_3}$	188.6	-1.5	1.0
$\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)^{350}_{(-0.8,0.6)}$	2347.5	-291.3	$1.3/\varepsilon$
$\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)^{350}_{(0.8,-0.6)}$	224.4	7.6	$0.4/\varepsilon$
A_{FB}^{350}	-2.2%	6.8%	0.8%
$\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)^{500}_{(-0.8,0.6)}$	1450.6	-24.4	$1.0/\varepsilon$
$\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)^{500}_{(0.8,-0.6)}$	154.8	12.7	$0.3/\varepsilon$
A_{FB}^{500}	-2.6%	5.3%	1%

Masses from the continuum

Fitting $e^+e^- \rightarrow \tilde{\chi}_i^+ \tilde{\chi}_j^-$ @LC ($\mathcal{L} = 200 \text{ fb}^{-1}$ and $\varepsilon = 15\%$)

Observable	Tree value	Loop correction	Error
$m_{\tilde{\chi}_1^{\pm}}$	149.6	_	0.1
$m_{ ilde{\chi}_2^\pm}$	292.3	-	0.5
$m_{ ilde{\chi}_1^0}$	106.9	_	0.2
$m_{ ilde{\chi}^0_2}$	164.0	2.0	0.5
$m_{ ilde{\chi}^0_3}$	188.6	-1.5	0.5
$\sigma(ilde{\chi}_1^+ ilde{\chi}_1^-)^{350}_{(-0.8,0.6)}/fb$	2347.5	-291.3	$1.3/\varepsilon$
$\sigma(ilde{\chi}_1^+ ilde{\chi}_1^-)^{350}_{(0.8,-0.6)}/fb$	224.4	7.6	$0.4/\varepsilon$
A_{FB}^{350}	-2.2%	6.8%	0.8%
$\sigma(ilde{\chi}_1^+ ilde{\chi}_1^-)^{500}_{(-0.8,0.6)}/fb$	1450.6	-24.4	$1.0/\varepsilon$
$\sigma(ilde{\chi}_1^+ ilde{\chi}_1^-)^{500}_{(0.8,-0.6)}/fb$	154.8	12.7	$0.3/\varepsilon$
A_{FB}^{500}	-2.6%	5.3%	1%

Masses from threshold scans

Fit Results: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- @LC$ (preliminary)

	Parameter	NLO result $\pm 1\sigma(\pm 2\sigma)$	LO result $\pm 1\sigma$
ſ	$M_1/{ m GeV}$	$125.0 \pm 0.6 \; (\pm 1.2)$	122.0 ± 0.5
6	$M_2/{ m GeV}$	$250.0 \pm 1.6 \; (\pm 3.0)$	260.7 ± 1.4
1	$\mu/~{ m GeV}$	$180.0 \pm 0.7 \; (\pm 1.3)$	176.5 ± 0.5
l	aneta	$10.0 \pm 1.3 \; (\pm 2.6)$	27.0 ± 9.0
	$m_{\tilde{ u}}/~{ m GeV}$	$1500 \pm 20 \; (\pm 40)$	2230 ± 50
	$m_{\tilde{t}_2}/~{ m GeV}$	$800^{+220}_{-170} \begin{pmatrix} +540\\ -280 \end{pmatrix}$	_

Errors

 $\sim 0.5\%$

Fit Results: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- @LC$ (preliminary)

Using masses from threshold scans:

Improved Errors

Parameter	NLO result $\pm 1\sigma(\pm 2\sigma)$	NLO result $\pm 1\sigma(\pm 2\sigma)$
MN GeV	$125 \pm 0.4 \; (\pm 0.7)$	$125 \pm 0.3 \; (\pm 0.7)$
$M_2/{{ m GeV}}$	$250 \pm 0.6 \ (\pm 1.1)$	$250 \pm 0.6 \; (\pm 1.3)$
$\mu/~{ m GeV}$	$180 \pm 0.4 \ (\pm 0.8)$	$180 \pm 0.4 \; (\pm 0.8)$
an eta	$10.0 \pm 0.6 \; (\pm 1.2)$	$10 \pm 0.5 \; (\pm 1)$
$m_{\tilde{\nu}}/ \mathrm{GeV}$	$1500 \pm 19~(\pm 40)$	$1500\pm24~(^{+60}_{-40})$
$\cos \theta_{\tilde{t}}$	_	$0\pm 0.15~(^{+0.4}_{-0.3})$
$m_{\tilde{t}_1}/~{ m GeV}$	_	400^{+180}_{-120} (at limit)
$m_{\tilde{t}_2}/~{ m GeV}$	$800^{+240}_{-160} \left(^{+700}_{-260}\right)$	$800^{+300}_{-170} \left(^{+1000}_{-290}\right)$
		Sensitivity to

additional parameters

Summary

- Tree-level parameter determination possible up to ${\cal O}(\%)$ level at a LC via $\tilde{\chi}^0/\tilde{\chi}^\pm$ production
- Full $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$ @NLO calculated
- Extract parameters M₁, M₂, μ, tan β, m_{t̃i} and cos θ_t from fit to NLO predictions for masses, polarised cross-sections and A_{fb}
- Increased sensitivity to larger number of parameters compared to LO analyses
- Show crucial role played by improved determination of masses from threshold scans

Summary

- Tree-level parameter determination possible up to ${\cal O}(\%)$ level at a LC via $\tilde{\chi}^0/\tilde{\chi}^\pm$ production
- Full $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$ @NLO calculated
- Extract parameters M₁, M₂, μ, tan β, m_{t̃i} and cos θ_t from fit to NLO predictions for masses, polarised cross-sections and A_{fb}
- Increased sensitivity to larger number of parameters compared to LO analyses
- Show crucial role played by improved determination of masses from threshold scans

Outlook

- Study various other scenarios
- Investigate sensitivity to ϕ_t

Obtaining an IR finite result for e^+e^- to charginos

- Must include soft radiation as external charged particles, but this introduces a cut-off.
- Phase-space slicing method, divide the photonic corrections phase space into soft ($E < \Delta E$), collinear ($\theta < \Delta \theta$) and finite regions

$$\sigma^{\text{full}} = \sigma^{\text{tree}} + \sigma^{\text{virt+soft}} + \sigma^{\text{soft}} + \sigma^{\text{coll}}.$$

Interested in weak SUSY corrections:

1

$$\sigma^{\text{weak}} = \sigma^{\text{virt+soft}}(\Delta E) - \frac{\alpha}{\pi} \sigma^{\text{tree}} \left(\log \frac{4\Delta E^2}{s} (L_e - 1 + \Delta_{\gamma}) + \frac{3}{2} L_e \right),$$

where Δ_{γ} is given by the coefficient of the terms in the soft photon correction arising from final state radiation, and the interference between initial and final state radiation, which contain ΔE .

- Left with the "reduced genuine SUSY cross-section" as defined by the SPA convention
- Using FormCalc, can automatically include soft correction

Existing results for for e^+e^- to charginos

- Compared to existing results⁵, where the corrections are calculated in the SPS1a' benchmark scenario.
- In Oller et al., 2005, different approaches adopted for the renormalisation of the chargino and neutralino mixing matrices, of tan β and of the electric charge. In addition the sneutrino mass must be shifted in order to allow the selectron mass to be chosen on-shell, as the selectron enters neutralino production which is studied in the same work
- Our results compare up to expected accuracy taking into account these differences in renormalisation approach
- Approach to chargino-neutralino renormalisation by Fritzsche, 2005 is comparable to ours, but differs in renormalisation of tan β, our results found to be within a percent

⁵W. Oller, H. Eberl and W. Majerotto, Phys. Rev. D **71** (2005) 115002 [arXiv:hep-ph/0504109] and T. Fritzsche, PhD Thesis, Cuvillier Verlag, Göttingen 2005, ISBN 3-86537-577-4