The potential of the ttbar charge asymmetry measurement at an FLC with $\sqrt{s} = 500 \text{ GeV} - 3 \text{ TeV}$

or Challenges and opportunities of boosted top quarks at lepton colliders

J. Trenado (U. Barcelona), E. Ros, M. Vos (IFIC Valencia)

Charge asymmetry in the LEP era...

Precision measurements of electroweak observables: a sensitive probe for BSM physics

Forward-backward asymmetry of leptons/quarks at LEP/SLD Polarized asymmetries (extraction of A-parameters)

Z-pole summary table from PDG 2011

(for a complete table follow this link, see also A. Schael et al., hep-ex/0509008)

Quar	ntity	Value	SM	Pull Dev.
A LOT	of measureme	ents with rather too	o good agreement wi	th the SM prediction
A ^(0,e)		0.0145 ± 0.0025	0.01633 ± 0.00021	-0.7, -0.7
Α ^(0,μ)		0.0169 ± 0.0013		0.4, 0.6
$A^{(0,\tau)}$		0.0188 ± 0.0017		1.5, 1.6
A ^(0,s) _{FB}		0.0976 ± 0.0114	0.1035 ± 0.0007	-0.6, -0.4
A ^(0,c)		0.0707 ± 0.0035	0.0739 ± 0.0005	-0.9, 0.8
A ^(0,b) _{FB}		0.0992 ± 0.0016	0.1034 ± 0.0007	-2.7, -2.3

Shown to be sensitive to certain warped ED setups

Example: Djouadi, Moreau, Richard, Nucl.Phys.B773:43-64,2007, hep-ph/0610173

AC at hadron colliders

FB asymmetry @ Tevatron

Kuhn & Rodrigo, Phys.Rev.,vol. D59, p. 054017, 1999. CDF, "Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production," Phys.Rev., vol. D83 p. 112003, 2011.

D0, "Forward-backward asymmetry in top quark-antiquark production," Phys.Rev.,vol. D84, p. 112005, 2011

Charge asymmetry @ LHC

Aguilar-Saavedra, Perez-Victoria, JHEP,vol. 1105, p. 034, 2011. Bai, Hewett, Kaplan, Rizzo, JHEP, vol. 1103, p. 003, 2011.

First CMS measurement (2010 data):

 $A_{c} = 0.06 \pm 0.134 \text{ (stat)} \pm 0.026 \text{ (syst)}$

ATLAS (0.7/fb of 2011 data):

 $A_{c} = -0.024 \pm 0.016 \text{ (stat)} \pm 0.023 \text{ (syst)}$

The whole family of models is constrained by a combinatio of ttbar resonance, same-sign top search, ttbar cross-sectimeasurement and asymmetry measurements

FLC

We'll investigate the potential of an $A^{(0,t)}_{FB}$ measurement at an FLC

• Considering FLC options $\sqrt{s} = 500$ GeV, 1 TeV, 3 TeV

complementary to LAL study presented by M. Poeschl and CLIC study by M. Battaglia et al.

- Focusing on experimental issues that affect precision measurements on ttbar final state
- Using a mixture of analytical theory prediction, MadGraph and Pythia, *later* on attempt to include corrections... see Fleischer et al. hep/ph0302259, Glover et al. hep/ph04010110
- For a start, using a simple fast simulation for the detector response benchmarked against ATLAS simulation, using DBD samples for ILC detectors as soon as samples are available

120k tt events/year Assuming L =10³⁴ cm⁻²s

Sensitivity to BSM physics

FLC has a sensitivity to Z' resonances with masses that are well beyond it's direct reach due to interference of γ /Z/Z'.

First attempt to quantify sensitivity: evaluate up to which mass the deviation from the Standard Model is larger than 1.5 %: **ILC500 GeV: sensitive for Z' mass up to ~3 TeV**

71	<u></u>					
Zmass	SM	1 TeV	2 TeV	3 TeV	4 TeV	5 TeV
A _{FB} ^{tt} 0.4	1 ± 0.01	0.289	0.382	0.397	0.401	0.407

ILC1 TeV : mass reach for Z'_{SSM} O(3 TeV)

Z' mass	SM	1 TeV	2 TeV	3 TeV	4 TeV	5 TeV
A _{FB} ^{tt}	0.554	0.289	0.434	0.513	0.532	0.537

Sensitivity

See for example: F. Corradeschi, LCWS10 (and also arXiv:1202.0660 and M. Battaglia, LCWS11)

Same message as the previous slide:

Warped Extra Dimension (WED) Model based on SU(2) x SU(2) x U(1) symmetry on a slice of AdS5, features a composite top quark with preferential coupling to the extra gauge bosons!

Mass reach strongly enhanced by ttbar measurement

The FB asymmetry - experimental

Simple study of sensitivity typically assumes a fixed experimental sensitivity:

- theory error assumed constant (or irrelevant)
- experimental error \rightarrow constant with \sqrt{s} ?
- statistical error \rightarrow x-sec drops strongly

We'll explore whether these assumptions hold for a complex measurement like the ttbar asymmetry \rightarrow provide a better-founded set of errors to evaluate the BSM potential of this measurement

Statistical error after 1 ab^{-1} (acceptance = 12 %)						
	@ 5	00 GeV	->>>	$\Delta A_{_{FB}} = 0.4 \%$	$(\sigma = 0.6 \text{ pb})$	
	@	1 TeV	->>>	$\Delta A_{_{FB}} = 0.7 \%$	$(\sigma = 0.2 \text{ pb})$	
	@	3 TeV	->>>	$\Delta A_{_{FB}} = 1.0 \%$	$(\sigma = 0.1 \text{ pb})$	

Error on $\rm A_{_{FB}}$ due to a top mass error of 1.6 GeV

(a) 500 GeV ->>> $\Delta A_{FB} = 0.4 \%$ (a) 1 TeV ->>> $\Delta A_{FB} = 0.1 \%$

LHC vs ILC

Pythia for ttbar production (ISR and $\gamma\gamma$ ->ttbar production discarded)

Detector response modeled using fast simulation (to be replaced with full ILD simulation)

Combine lepton + neutrino + b-jet Combine two light and one b-jet

Choose combination that gives best overall match (W-mass, leptonic top mass, hadronic top mass, b-tagging)

Reconstruct top quarks

The FB asymmetry @ 500 GeV

The FB asymmetry at 500 GeV

One handle remains to be explored at the ILC: b-jet charge determination

ATL-CONF-2011-106: sophisticated reconstruction cannot resolve all ambiguities

74% of events is correctly reconstructed ttbar modeling is dominant systematic

ttbar event topologies - boosted top quarks

The topology varies with $m_{tt} (\sim \sqrt{s} \text{ for } e^+e^-)$

The reconstruction algorithm must follow:

- For events at rest (500 GeV): resolve all partons
- Transition region (1 TeV): top and anti-top decay products remain back-toback, but objects can still be resolved
- For highly boosted top quarks (3 TeV): reconstruct top decay as a single jet

Production "at rest"

Run Number: 158975, Event Number: 21437359 Date: 2010-07-12 06:04:37 BST

Early "I+jets" candidate ATLAS-CONF-2010-063

Moderate boost

First boosted top quark ATLAS-CONF-2011-073

Highly boosted top quarks

Run Number: 180400, Event Number: 54251178

Date: 2011-04-28 03:33:58 CEST

Now that the LHC experiments have gained first "hands-on" experience with boosted top quarks, we can assess their challenges & opportunities, comparing the acceptance and systematics for low and high mass selection \rightarrow input to this study

See also: Plehn & Spannowsky on top-tagging Reports from BOOST2010 & BOOST2011 BSM at LHC Forum, Heidelberg, Dec 2011 CMS & ATLAS ttbar resonance searches

Top quark reconstruction @ 1 TeV

One more handle

"back-to-back"

Angle between b-jet and lepton is a powerful handle at 1 TeV

The FB asymmetry @ 500 GeV

> 90 % of events is correctly reconstructed

Off-diagonal elements disappear

mapping OK reco = truth within 2 %

ILC1000

A measurement of the forward-backward asymmetry ILC1000 (or CLIC @ 3 TeV) is complementary in several ways to a measurement in ILC500 (theory and experimental errors, sensitivity to new physics)

The relatively modest boost at ILC@1TeV is sufficient to circumvent the potentially large systematic due to ambiguities in assignment of jets to top and anti-top quark candidate

Repeat in full simulation, extend to more extensive set of observables (left-right asymmetry, ...)

Top production I

σ_{tī} [pb]

Theory x-sec @ 7 TeV σ_{tt} (MCFM) = 158⁺²³ ₋₂₄ pb

 $\sigma_{tt}^{approx NNLO} = 163^{+7} (scale)^{+9} (PDF)$ N. Kidonakis, Phys.Rev. D82 (2010) 114030, arXiv:1009.4935. doi:10.1103/PhysRevD.82.114030.

Measurement

CMS I+jets+tag* CMS dilepton* CMS Combined* ATLAS Combined**

Cross section [pb]

150 ±9 (stat) ± 17 (syst) ±6(lumi) 168 ±18 (stat) ± 14 (syst) ±7(lumi) 158 ±10(unc.) ± 15(cor.) ± 6(lumi) 180 ± 9 (stat.) ± 15 (syst.) ± 6 (lumi.)

Full 2010 data set, 36 pb⁻¹, CMS PAS TOP-11-001 ***Full 2010 data set, 5 channels, 35 pb⁻¹,ATLAS-CONF-2011-040*

There is no super abundant exotic source of ttbar events

Top production II

Direct search for resonances

CMS 36 pb-1, combined e+jets and m+jets channels (TOP-10-007-PAS) ATLAS result approved

Extend in several directions: - more reconstruction algorithms

- more channels
- more models
- effective operators (Zhang & Willenbrock '10, Aguilar-Saavedra '10, Degrande et al. '10)

- ✓ The single top production mechanisms might display different/increased sensitivity to new physics. They moreover offer an interesting field for studies of polarization.
- CMS: Selection optimized for the t-channel mode on 35.9 pb⁻¹ (TOP-10-008-PAS)
 Measured cross-section: 83.6 ± 29.8(stat. + syst.) ± 3.3(lumi.) pb
- ✓ ATLAS (ATLAS-CONF-2011-027):
 - → T-channel 53 +46-36 pb (theory 66 pb)
 - → Wt channel < 158 pb (theory 15 pb)

Top decay

W-boson polarization in top decays

ATLAS-CONF-2011-037

 Extract helicitiy fractions (combining lepton and muon channels):

→
$$F_0 = 0.59 \pm 0.12$$

→ F_L = 0.42 ± 0.12

 Constrain anomalous Wtb couplings

ttbar+X

Associated production ttbar+X, where X can be anything, from gluons to bbar to ttbar to Higgs to SUSY sparticles.

Example: ATLAS ttbar + E^{miss} study (ATLAS-PHYS-CONF-2011-036)

No excess found: limits on top partners T->tX, where X is a neutral particle