Early LHC Results

Implications of LHC Searches on Constrained Supersymmetric Models

Matthew Dolan

IPPP University of Durham

DESY Seminar, 5/12/11

(ロ) (同) (三) (三) (三) (三) (○) (○)

What's a SUSY?

Early LHC Results

Bosons \Leftrightarrow Fermions

- $Q|\text{top}, t\rangle = |\text{scalar top}, \tilde{t}\rangle$ $Q|\text{gluon}, g\rangle = |\text{gluino}, \tilde{g}\rangle$
- Doubles size of SM spectrum.

Breaking SUSY

- Unbroken SUSY: All particles in multiplet have same mass.
- Reality: $m_e \neq m_{\tilde{e}} \implies$ SUSY broken.

Why?

Early LHC Results

SUSY can

Stabilise electroweak hierarchy.

Unification of gauge couplings.

Radiative electroweak symmetry breaking.

Cold dark matter candidate: neutralino,gravitino...

(日) (日) (日) (日) (日) (日) (日)

The MSSM

Early LHC Results

Take the field content of the SM and promote all fields to superfields. Adds superpartners differing by s = 1/2.
 SUSY partners should have masses ~ 0.1–1 TeV.

The Higgs Sector

- Superpartner of Higgs boson is a fermion anomalies don't cancel anymore.
- Solution: Add extra Higgs doublet.
- Physical states: h⁰, H⁰, A, H[±] and Goldstone bosons: G⁰, G[±]
- $\square \tan \beta = v_2/v_1$

The Minimal Supersymmetric Standard Model

Desperately Seeking SUSY

Early LHC Results

SUSY events typically involve

- Jet production
- Leptons

・ロト・西ト・西ト・西・ うろの

ATLAS Jets+MET Search (1/fb)

Early LHC Results

Matt Dolan

Signal Region	\geq 2-jet	\ge 3-jet	\ge 4-jet	High mass
E _T ^{miss}	> 130	> 130	> 130	> 130
Leading jet $p_{\rm T}$	> 130	> 130	> 130	> 130
Second jet <i>p</i> _T	> 40	> 40	> 40	> 80
Third jet p_{T}	_	> 40	> 40	> 80
Fourth jet p_{T}	_	_	> 40	> 80
$\Delta \phi$ (jet, P_T^{miss}) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.3	> 0.25	> 0.25	> 0.2
m _{eff}	> 1000	> 1000	> 500/1000	> 1100

The CMSSM and a simplified model

Early LHC Results

CMSSM: A 4 parameter model

- *m*₀: Universal scalar masses
- *m*_{1/2}: Universal gaugino masses
- A₀: Universal trilinear couplings
- \blacksquare tan β
- All defined at $M_{GUT} \approx 2 \times 10^{16} \text{ GeV}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A simplified model

- *m_{squark}* and *m_{gluino}*
- Massless neutralino.

ATLAS Jets+MET in CMSSM

ATLAS Jets+MET in a simplified model.

What about other models?

Early LHC Results

Gauge Mediation

SUSY broken in hidden sector

 SUSY breaking is mediated to MSSM by a messenger sector using gauge interactions

Supersymmetry breaking origin (Hidden sector)

MSSM (Visible sector)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Preserve unification: messengers in $5 \oplus \overline{5}$ of SU(5).

General Gauge Mediation

Early LHC Results

Split Gauge Mediation

■ Have messengers (q, l) in 5 ⊕ 5 with messenger couplings

 $\lambda_I X I \overline{I} + \lambda_q X q \overline{q}$

Get gaugino masses (at messenger scale)

$$m_{\tilde{g}} = \frac{\alpha_3}{4\pi} \Lambda_T \quad m_{\tilde{w}} = \frac{\alpha_2}{4\pi} \Lambda_D \quad m_{\tilde{b}} = \frac{\alpha_1}{4\pi} (\frac{2}{3} \Lambda_T + \Lambda_D)$$

Scalar masses

$$m_{\tilde{f}}^2 = 2\left(C_3(\frac{\alpha_3}{4\pi})^2\Lambda_T^2 + C_2(\frac{\alpha_2}{4\pi})^2\Lambda_D^2 + \frac{Y^2}{2}(\frac{\alpha_1}{4\pi})^2(\frac{2}{3}\Lambda_T^2 + \Lambda_D^2)\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

General Gauge Mediation

Early LHC Results

Another possibility

Have gaugino masses

$$m_{\tilde{\lambda}_i} = rac{k_i lpha_i}{4\pi} \Lambda_G$$

And scalar masses

$$m_{\tilde{t}}^2 = 2\sum_{i=1}^3 C_i k_i \frac{\alpha_i^2}{(4\pi)^2} \Lambda_S^2$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

What are limits like in these kinds of theories?

Re-interpreting SUSY searches

Early LHC Results

Strategy

- Generate grids of points in desired models (Softsusy)
- Write analysis code in Rivet framework (generator independent)
- LO cross-section and signal-only event generation by Herwig++
- NLO K-factors from PROSPINO.

Validation

Need to validate our code against the ATLAS results.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Validation: 2j channel

Validation: 3j channel

GGM: $M_{mess} = 10^{14}$ GeV, tan $\beta = 5$

GGM: $M_{mess} = 10^7$ GeV, tan $\beta = 5$

Split GGM

Early LHC Results

900

All Together Now

Mass Limits

Early LHC Results

For $m_{ ilde{q}}=m_{ ilde{g}}$

- Compressed spectrum: 600 GeV
- AMSB: 900 GeV
- CMSSM: 950 GeV
- PGGM7: 960 GeV
- PGGM14: 1 TeV
- Simplified Model: 1075 GeV

Split GGM

- Automatically have $m_{\tilde{g}} \sim m_{\tilde{q}}$, both controlled by Λ_T
- Limit varies from m_{g̃} ~ 950 GeV down to m_{g̃} ~ 800 GeV, depending on Λ_D

Global Fits

Early LHC Results

Confronting a Model with Data

- Combine measurements
- Compare with predictions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- Constrain parameters
- Exclude model?

A well-known global fit

ρ

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Δm

εκ

2.0

sol. w/ cos 2β < 0

1.5

(excl. at CL > 0.95)

The Models

Early LHC Results

CMSSM: 4 parameters

The usual story: $m_0, m_{1/2}, A_0$ and $\tan \beta$

NUHM1: 5 parameters

 As in CMSSM, but Higgs masses become an independent parameter

$$m_{H_u}^2 = m_{H_d}^2 \neq m_0^2$$

• Equivalent to M_A free parameter at EW scale.

Constraints on SUSY

Early LHC Results

Matt Dolan

Low Energy Precision Data

Flavour physics: $BR(B \rightarrow X_s \gamma), B \rightarrow \tau \nu, B_s \rightarrow \mu^+ \mu^-$. Also $(g-2)_{\mu}$

High Energy Precision Data

Precision electroweak observables: M_W

Cosmology/Astrophysics

Relic density: $\Omega_{DM}h^2 = 0.1109 \pm 0.0056$ (WMAP7) DM direct detection: CDMS, XENON...

くロ とう ふ 山 とう く 川 とう く 日 とう く 日 と

Direct Searches

ATLAS, CMS, LEP, Tevatron

Observables

Early LHC Results

Low Energy Obs	Electroweak Observable
$BR(B \rightarrow X_{s}\gamma)$	m _W
$BR(B_s ightarrow II)$	$\sin^2 \theta_{eff}^{I}$
$BR(B_d ightarrow II)$	$A_{fb}^{0,b}$
$R_{\Delta M_s}$	$A_{fb}^{0,c}$
$R_{B au u}$	R_l^0
$R(B \rightarrow X_{s}II)$	$\sigma_{\it had}^{0}$
$R(K ightarrow \pi u ar{ u})$	$\Delta \alpha^{(0)}_{had}(m_Z^2)$
$BR(K \rightarrow \tau \nu)$	\mathcal{A}_{c}
$R_{\Delta M_K}$	$A^0_{LR}(SLD)$
	R_b^0
$(g-2)_{\mu}$	R_c^0
	m _t
m _h	m _Z
$\Omega_{\rm DM} h^2$	< Ab< ₽ > < ≡ > < ≡)

E 990

Fit Methods

Early LHC Results

Matt Dolan

Statistical Measure

$$\chi^2_{tot} = \sum_{obs} \chi^2_i = \sum_{obs} \frac{\left(C_i^2 - P_i^2\right)}{\sigma_i^2}$$

For derived quantities σ_i incorporates both experimental and theoretical errors.

Fit Method

- Use Markov Chain Monte Carlo for sampling, with χ² minimisation using Minuit as an 'afterburner'.
- Sample $O(10^8)$ points for CMSSM/NUHM

Best-fit Points (before LHC data)

Early LHC Results

Model	Min χ^2	Prob	<i>m</i> _{1/2}	m_0	A_0	$\tan\beta$
CMSSM	21.5	37%	360	90	400	15
NUHM1	20.8	29%	340	110	-520	13

Comments

CMSSM/NUHM: Preference for light SUSY, with $m_{\tilde{q}} \sim m_{\tilde{g}} \approx 600 - 700 \text{ GeV}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Small tan β , with $\tilde{\tau}$ co-annihilation.

Incorporating LHC Data

Early LHC Results

SUSY Searches

- In CMSSM/NUHM 0-lepton searches provide the maximum reach.
- OI searches independent of $\tan \beta$ and A_0 .
- We consider both the ATLAS 0I and CMS α_T searches.
- Other searches are not as strong as these in the CMSSM.

Method

Pick the search with the highest *expected* sensitivity along rays in m₀-m_{1/2} plane.

Calculating χ^2 : Jets + MET

Early LHC Results

Method

Pick the search with the highest *expected* sensitivity along rays in m₀-m_{1/2} plane.

ATLAS Jets + MET search

 $BR(B_s \rightarrow \mu^+ \mu^-)$

Early LHC Results

This branching ratio gets SUSY corrections proportional to $\tan^6 \beta$.

Searches

- Upper bounds set by LHCb and CMS with 1 fb⁻¹
- Likelihood function from LHCb-CMS combination
- Yields $BR(B_s \rightarrow \mu^+\mu^--) < 1.08 \times 10^{-8}$ (~ 3xSM) at 95% CL, with minimum near SM value.
- CDF claim two-sided limit (unofficial) combination discussed in paper.

Heavy Higgs Searches

Early LHC Results

${\it H}/{\it A} \to \tau\tau$

- CMS search with 1.6*fb*⁻¹, only affects NUHM1
- CMS provide 68, 95 and 99.7% CL contours
- Calculate $\sigma \times BR$ using $\sigma(bb \rightarrow H_{SM})$, and correct with effective NUHM1 couplings from FeynHiggs.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

CMS $H/A \rightarrow \tau \tau$ limit

Dark Matter Direct Detection

Early LHC Results

XENON100

- Observed 3 events, expected 1.8 ± 0.6
- Construct likelihood model for event numbers using CL_S & Poisson statistics.
- 90% CL corresponds to 6.1 events, and rescale from contour using calculated σ^{SI}_p.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Slight excess leads to $\chi^2 \sim 0.3$ for small σ_p^{SI}

XENON100 Results

CMSSM $m_0 - m_{1/2}$

NUHM $m_0 - m_{1/2}$

Best-fit points: CMSSM

Early LHC Results

Model	χ^2 /d.o.f.	Prob	<i>m</i> _{1/2}	<i>m</i> 0	A_0	$\tan\beta$
pre-LHC	21.5/20	37%	360	90	400	15
LHC _{1/fb}	28.8/22	15%	780	450	1100	41
No $(g-2)_{\mu}$	21.3/20	43%	2000	1050	430	22

Comments

- P-value assumes sum of normal distributions fully frequentist thing would be to throw toys.
- P-value drops dramatically after 1/fb
- Driven by tension with (g 2)_µ omit this and no tension.

CMSSM omitting $(g - 2)_{\mu}$

500

1000

1500

Early LHC Results 2500 m_{1/2} [GeV/c²] with (g-2) ignoring (g-2) 2000 1500 1000 500 11111 0ò

Manual I

000 2500 m₀ [GeV/c²]

2000

Best-fit points: NUHM1

Matt Dolan

Model	χ^2 /d.o.f.	Prob	<i>m</i> _{1/2}	<i>m</i> 0	A_0	$\tan\beta$
NUHM1	20.8/18	29%	340	110	-520	13
$LHC_{1/fb}$	27.3/21	16%	730	150	910	41
No $(g-\widetilde{2})_{\mu}$	20.3	43%	2020	1410	-2580	48

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Comments

Again, drop by factor \sim 2 in p-value.

• $\tan \beta$ increases by \approx 30.

m_h : Predicted by omitting LEP constraint

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

Gluino mass *m*_g

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

P values: NUHM1 pre LHC

P values: NUHM1 post LHC

The F-test

Early LHC Results

Matt Dolan

Can we compare the MSSM and SM?

- Want to compare two models, A and B say, where B is a supermodel of A.
- Does the data justify going from model A to model B?
- If model A is correct/sufficient, expect that relative increase in \(\chi^2\) going from A to B is equal to relative increase in degrees of freedom:

$$\frac{\chi_A^2 - \chi_B^2}{\chi_B^2} \approx \frac{A_{d.o.f} - B_{d.o.f.}}{B_{d.o.f.}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The F-test

Early LHC Results

Can we compare the MSSM and SM?

If B correct, expect relative increase of χ² greater than relative increase in d.o.f.

$$\frac{\chi_{A}^{2} - \chi_{B}^{2}}{\chi_{B}^{2}} > \frac{A_{d.o.f} - B_{d.o.f.}}{B_{d.o.f.}}$$
$$F_{\chi} \equiv \frac{(\chi_{A}^{2} - \chi_{B}^{2})/(A_{d.o.f} - B_{d.o.f.})}{\chi_{B}^{2}/B_{d.o.f.}}$$

If $F_{\chi} > 1$

Model B is better than A.

Coincidence - calculate a p-value.

SM vs MSSM

Early LHC Results

Apples and Oranges

- Including DM: CMSSM/NUHM always wins.
- So consider 'everything else' and omit DM.
- SM can't explain (g 2)_µ, but no tension with jets+MET search.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Get $p_{SM} \approx 9\%$ with $(g 2)_{\mu}$, $p_{SM} \approx 49\%$ without.
- Probability switching to CMSSM is warranted: 90%, NUHM1: 97%.
- Omit $(g-2)_{\mu}$: no point switching from SM.

SM vs MSSM

Early LHC Results

Apples and Oranges

- Including DM: CMSSM/NUHM always wins.
- So consider 'everything else' and omit DM.
- SM can't explain (g 2)_µ, but no tension with jets+MET search.
- Get $p_{SM} \approx 9\%$ with $(g-2)_{\mu}$, $p_{SM} \approx 49\%$ without.
- Probability switching to CMSSM is warranted: 90%, NUHM1: 97%.
- Omit $(g-2)_{\mu}$: no point switching from SM.

SM vs MSSM

Early LHC Results

Apples and Oranges

- Including DM: CMSSM/NUHM always wins.
- So consider 'everything else' and omit DM.
- SM can't explain (g 2)_µ, but no tension with jets+MET search.
- Get $p_{SM} \approx 9\%$ with $(g-2)_{\mu}$, $p_{SM} \approx 49\%$ without.
- Probability switching to CMSSM is warranted: 90%, NUHM1: 97%.
- Omit $(g 2)_{\mu}$: no point switching from SM.

Summary

Early LHC Results Matt Dolan

Limits

- Compressed spectra $m_{ ilde{q}} pprox m_{ ilde{g}} pprox 600 \ {
 m GeV}$
- Limits on $m_{\tilde{q}} \approx m_{\tilde{g}} \approx$ 900 GeV in some simple models.
- Limits significantly overstated for simplified models.

Fits

- CMSSM increasingly unlikely
- NUHM1 better fit.
- Decouple strong and weakly interacting sectors?
- Effect of Higgs mass measurement?

Bonus Slides Early LHC Results

e^+e^- pair production thresholds (NUHM1)

e^+e^- pair production thresholds (NUHM1)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで